Pattern Classification

EET3053
Lecture 08: Artificial Neural Network

Dr. Kundan Kumar
Associate Professor
Department of ECE

Faculty of Engineering (ITER)
S'O’A Deemed to be University, Bhubaneswar, India-751030
@ 2021 Kundan Kumar, All Rights Reserved

Introduction
@®00000

Neural Networks

Kundan Kumar

Introduction
0@0000

What is Neural Network?

m Neural Networks are networks of neurons, for example, as found in real (i.e.
biological) brains (86 billion neurons).

Biological Neuron

dendrites

Vs ‘ synapses

nucleus

cell body

. Receives signals from other neurons
: Processes the information
: Transmits the output of this neuron
. Point of connection to other neurons

O o0ooao

2/41 Kundan Kumar Pattern Classification

Introduction
00000

Artificial Neural Network (ANNs)

» Artificial Neural Networks (ANNs) are network of Artificial Neurons and hence
constitute crude approximation to parts of real brains.

® The brain uses chemicals to transmit information; the computer uses electricity.

X0 synapse

cell body

z w;x; +b
i

dendrites f (Z wix; + b)
i
output axon
activation
function

nucleus

Kundan Kumar Pattern Classification

Introduction
00000

Why are Artificial Neural Networks worth studying?

® They are extremely powerful computational devices.
® Massive parallelism makes them very efficient.

® They can learn and generalize from training data — so there is no need for enormous
programming skill.

Kundan Kumar Pattern Classification

Introduction
000000

Neural Network Applications

® Real world application

0 Financial modeling — predicting the stock market

Time series prediction — climate, weather, seizures

Computer games — intelligent agents, chess, backgammon

Robotics — autonomous adaptable robots

Pattern recognition — speech recognition, seismic activity, sonar signals
Data analysis — data compression, data mining

Bioinformatics — DNA sequencing, alignment

Ooo0o0oooaod

Kundan Kumar Pattern Classification

Introduction
00000®

Brain vs. Computers

B Processing elements: There are 10™* synapses in the brain, compared with 10® transistors in the
computer

B Processing speed: 100 Hz for the brain compared to 10° Hz for the computer

B Style of computation: The brain computes in parallel and distributed mode, whereas the computer
mostly serially and centralized.

B fault tolerant: The brain is fault tolerant, whereas the computer is not.

B Adaptive: The brain learns fast, whereas the computer doesn't even compare with an infant's
learning capabilities

B ntelligence and consciousness: The brain is highly intelligent and conscious, whereas the computer
shows lack of intelligence

B Fvolution: The brains have been evolving for tens of millions of years, computers have been
evolving for decades.

Kundan Kumar Pattern Classification

McCulloch and Pitts Model
®0000

An abstract mathematical model of a neuron

® McCulloch and Pitts given a first attempt to form an abstract mathematical model

of a neuron in 1943.
® The binary linear classification model
O receives a finite number of inputs z1,z2,...,zq
O computes the weighted sum z = Z?Zl w;x; using the weights w1y, wo, . ..
O thresholds s and output 0 or 1 depending on whether the weighted sum is less than or
greater than a given threshold value T'.

, W

Inputs Inputs

. ' * W 0
o "% Summation T Output o 2/ Summation Output
Unit Unit
Xy Xu

Kundan Kumar

Pattern Classification

McCulloch and Pitts Model
0®000

McCulloch and Pitts Model

i'th weight zZ
output output b'?s g()
|
w1/, weights v v
2
v y=g|b+ E TiWw;

inputs T i *\
1) T3 \ z
nonlinearity i'th input

Kundan Kumar Pattern Classification

McCulloch and Pitts Model
0000

Decision Boundaries for AND and OR

We can now plot the decision boundaries of our logic gates

AND
wi=1, w2=1,6=1.5

AND
Iy I, out
0 0 0
0 1 0
1 0 0
1 1 1

Kundan Kumar Pattern Classification

McCulloch and Pitts Model
000®0

Decision Boundaries for AND and OR

We can now plot the decision boundaries of our logic gates

AND OR
wi=1,w2=1,6=1.5 wi=1, w2=1, 8=0.5

OR

-
o
=

alalalo

alalolo
“lo|=|o
= lo|lo|o

Kundan Kumar Pattern Classification

McCulloch and Pitts Model
0000®

Limitations Of McCulloch-Pitts Neuron

What about non-boolean (say, real) inputs?

Do we always need to hand code the threshold?

Are all inputs equally important? What if we want to assign more importance to
some inputs?

What about functions which are not linearly separable? Say XOR function.

Kundan Kumar Pattern Classification

Perceptron Model
000000

Perceptron Model

Perceptron Model
0®00000

Perceptron Model

m Qvercoming the limitations of the McCulloch-Pitts model, Frank Rosenblatt
proposed the classical perceptron model in 1958.

® Upgraded by Minsky-Papert in 1969.
0 More generalize computational model than McCulloch-Pitts model.
0 Can learn weights and threshold.

m Difference between McCullock Pitts Neuron and Perceptron:

O In perceptron, weights and bias are allowed to learn (already we did in linear classifiers).
o Not limited to only boolean inputs.

Kundan Kumar

Pattern Classification

Perceptron Model
00®0000

Basic Neural Model of Perceptron

® |nput to neurons:

O Input x; arise from other neurons or from
outside the network

0 Nodes whose inputs arise outside the network
are called input nodes and simply copy values

0 An input may excite or inhibit the response
of the neuron to which it is applied, depending
upon the weight of the connection.

® Synaptic efficacy is modeled using real weight
Wi

® The response of the neuron is a nonlinear
function f of its weighted inputs

Input |
signals

Kundan Kumar

Activation
function

Vg Output
> o) -

Summing
Jjunction

Synaptic
weights

Pattern Classification

Perceptron Model
000®000

Single Layer Perceptron

B The perceptron is an algorithm for supervised learning of binary classifiers.

® The perceptron algorithm is also termed the single-layer perceptron, to distinguish
it from a multilayer perceptron.

® The single-layer perceptron is the simplest feedforward neural network.
® Perceptron algorithm

O Input: A set of examples, (x1,91), (X2,92),- -+, (Xn, Yn)
O Output: A perceptron model defined by (wq, w1, ..., wy)
1 begin initialize a,n(-),criterion 6,k =0
2 do k+ k+1
5 acatnh)y y
YEVk
4 until n(k) >> y <0
YEVr

5 return a
6 end

Kundan Kumar Pattern Classification

Perceptron Model
0000800

Single Layer Perceptron

m QOther form of Perceptron Learning Rule
Olft=1land z=w'x>0
B then y = 1, so no need to change anything.
glft=1and z2<0

B then y = 0, so we want to make z larger.
B Update:
Wi w4 x

O Justification

Tx = (w4 x)Tx

/!
W
= WTX + xT'x

=wix+[[x]]

Kundan Kumar Pattern Classification

Perceptron Model
0000080

Perceptron Learning Rule

® For convenience, let targets be {—1,1} instead of our usual {0, 1}.

Z=W X

(1 ifz>0
Y=\ -1 ifz<o0

® Perceptron Learning Rule:
For each training case (x(, (")),
20— wTx()
If 2040 < 0,
w — w + t0x®)

Kundan Kumar Pattern Classification

Perceptron Model
000000e

Perceptron Learning Rule

® How can we define a sensible learning criterion when the dataset isn't linearly
separable?

® Why classification error and squared error are problematic cost functions for
classification?

® Recall from linear classifier, can we apply gradient descent to update the weights?

m |f yes then which cost/criteria function will be appropriate?

® Gradient Descent Algorithm to update the weights and bias:

Algorithm 1 (Basic gradient descent)

7 begin initialize a,criterion 6,7(:),k =0
2 dok<+ k+1

3 a+a—n(k)VJ(a)

4 until (k)VJ(a) < 0

5 return a

¢ end

Kundan Kumar Pattern Classification

Choosing a cost function
€0000000000000

0 — 1 Loss criteria function

0 ify=t
1 otherwise.

Lo-1(y,1) = {

This is the same criteria function that we used earlier.

Problem: how to optimize?

Chain rule:
850,1 . 3&),1 0z

ow;j 0z ow;

But 6%0;1 is zero everywhere it's defined!
O 80[:73;;1 means that changing the weights by a very small amount probably has no effect
on the loss.

O The gradient descent update is a no-op.

19/41 Kundan Kumar Pattern Classification

Choosing a cost function
0®000000000000

Squared Error Loss Function

y:WTx—i—b

Lsp(y.t) = %(y —1)?

Doesn't matter that the targets are actually binary.
Threshold predictions at y = 1/2

large
residual

T

The loss function hates when you make correct predictions with high confidence!

If t =1, it's more unhappy about y = 10 than y = 0.

20/41 Kundan Kumar Pattern Classification

Choosing a cost function
00®00000000000

Logistic nonlinearity

® There's obviously no reason to predict values outside [0, 1]. Let's squash y into this

interval.
® The logistic function is a kind of sigmoidal, or S-shaped, function:

z:wa—i—b

y=o0(2)
Lsr(y,t) = %(y —).

z=w'x+b

y=o(z)

Lsp(y,t) = %(y —t)°.

® A linear model with a logistic nonlinearity is known as log-linear:

21/41 Kundan Kumar Pattern Classification

Choosing a cost function
000®0000000000

Logistic nonlinearity: chain rule

® Chain Rule: derivative with respect to the weights
dESE o dﬁSE dy
dz dy dz
= -1yl -y)
O0Lsg dLgsg 0z
ow; dz 8—111]
dLsg
A

® derivative with respect to the bias:
dLsg dLsg dy

dz dy dz

=(y—-ty(l—y)
dLse dLsp 02

Kundan Kumar

Pattern Classification

Choosing a cost function
0000@000000000

Cross-Entropy Loss

m Cross-entropy (CE) is defined as follows:

_J —logy ift=1
Lon(y:?) _{ —logl—y ift=0

Lee(y,t) = —tlogy — (1 —t)logl —y.
® When we combine the logistic activation function with cross-entropy loss, you get
logistic regression:
z=w ' x+b
y=o(z)
Lcg = —tlogy — (1 —1t)logl —y.

Kundan Kumar Pattern Classification

Choosing a cost function
00000800000000

Cross-Entropy Loss: Chain rule

® Chain rule:
s=w' x+b
y=o0(2)
Lcog = —tlogy — (1 —t)logl —y.

Kundan Kumar Pattern Classification

Choosing a cost function
00000080000000

Example on perceptron

Question Compute the updated weights and bias using perceptron algorithm to model
the AND gate. Consider the initial weight and bias as 0 and learning rate as 0.5.

Kundan Kumar Pattern Classification

Choosing a cost function
0000000000000

Perceptron Model: Multiclass Problem

Kundan Kumar Pattern Classification

Choosing a cost function
00000000800000

Multiclass classification

® What about classification tasks with more than two categories?
® Targets form a discrete set {1,..., K}

® |t's often more convenient to represent them as one-hot vectors, or a one-of-K
encoding:

t=(0,...,0,1,0,...,0)

entry k is 1

® Now there are d input dimensions and K output dimensions, so we need K X d
weights, which we arrange as a weight matrix W.

®m Also, we have a K-dimensional vector b of biases.

Kundan Kumar Pattern Classification

Choosing a cost function

00000000080 000

Multiclass classification

® Linear predictions:

m Vectorized:

Pattern Classification

Choosing a cost function
0000000000e000

Multiclass classification

®m A natural activation function to use is the softmax function, a multivariable
generalization of the logistic function:
ek

yr = softmax(z1,...,2x)k = e
k/

® The inputs z; are called the logits.
® Properties:

O Outputs are positive and sum to 1 (so they can be interpreted as probabilities)

O If one of the z;'s is much larger than the others, softmax(z) is approximately the
argmax. (So really it's more like “soft-argmax”.)

0 Exercise: how does the case of K = 2 relate to the logistic function?

® Note: sometimes o(z) is used to denote the softmax function.

Kundan Kumar Pattern Classification

Choosing a cost function
00000000000e00

Multiclass classification

= |f a model outputs a vector of class probabilities, we can use cross-entropy as the
loss function:

K
Lon(y,t) ==Y tylogy
k=1

= —t' (logy).

where the log is applied element wise.

® Just like with logistic regression, we typically combine the softmax and
cross-entropy into a softmax-cross-entropy function.

Kundan Kumar Pattern Classification

Choosing a cost function
0000000000000

Multiclass classification

® Multiclass logistic regression:
z=Wx+b

y = softmax(z)
Log = —t' (logy)
® Tutorial: deriving the gradient descent updates

0LscE

—y—t
0z Y

® Softmax regression is an elegant learning algorithm which can work very well in
practice.

Kundan Kumar Pattern Classification

Choosing a cost function
0000000000000e

Input to Neurons

m Arise from other neurons or from outside the network

® Nodes whose inputs arise outside the network are called input nodes and simply
copy values

® An input may excite or inhibit the response of the neuron to which it is applied,
depending upon the weight of the connection.

Kundan Kumar Pattern Classification

Mutlilayer Perceptrons
0000000

Mutlilayer Perceptrons

Mutlilayer Perceptrons

Mutlilayer Perceptrons
0®00000

m Feed-forward neural network is a fully
connected directed acyclic graph.

® |n contrast to recurrent neural
networks, which can have cycles (out of
the scope of this course).

® Typically, units are grouped together
into layers.

an output
unit
b1

output layer

second hidden layer

first hidden layer
a hidden

unit
input layer

| aconnection

depth an input

unit

Courtesy: Roger Grosse, Lecture Notes

Kundan Kumar Pattern Classification

Mutlilayer Perceptrons
00®0000

Mutlilayer Perceptrons

® Each layer connects NV input units to

M output units. Note: the inputs and an output
unit
)

outputs for a layer are distinct from the
inputs and outputs to the network.

B We need an M x N weight matrix, W.
® The output units are a function of the
input units: y = f(x) = (Wx +b)

|/ a hidden
unit

output layer

second hidden layer

first hidden layer

input layer

| aconnection

depth an input
unit

Courtesy: Roger Grosse, Lecture Notes

Kundan Kumar Pattern Classification

Multilayer Perceptrons

Mutlilayer Perceptrons

O00@000

® Some activation functions

linear_Unit
.
2-
flz) =2
0
a-
4
-50 -25 0.0 25 50
sigmoid
(1
2) ==
10 fL) 1te /—_
0.5
0.0
-50 —25 0.0 25 50

binary step

1.0-
05
0 for z<0
fe)= { 1 for z>0
0.0

—5.0

-2.5 0.0 25 5.0

RelLU

f(z) = max(0; z)

-50 -25 0.0 25 50

attern Classificati

Mutlilayer Perceptrons
000000

Example: Exclusive OR

® Designing a network to compute XOR: Assume hard threshold activation function

Kundan Kumar Pattern Classification

Mutlilayer Perceptrons
0000080

Forward-Propagation

B Propagate the input through the network:

0 Assume sigmoid activation function,
0 Bias is dropped for simplification

yi=f Zw](.f)f <Z w,%.)xk> for one hidden layer
j k

Kundan Kumar Pattern Classification

Mutlilayer Perceptrons
000000e

Backpropagation Learning Algorithm

will update soon

Kundan Kumar Pattern Classification

References
0

References

[1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.

[2] Gose, E. (1997). Pattern recognition and image analysis.

Kundan Kumar Pattern Classification

	Introduction
	

	McCulloch and Pitts Model
	

	Perceptron Model
	

	Choosing a cost function
	

	Mutlilayer Perceptrons
	

	References
	

