
Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Pattern Classification
EET3053

Lecture 08: Artificial Neural Network

Dr. Kundan Kumar
Associate Professor
Department of ECE

Faculty of Engineering (ITER)
S‘O’A Deemed to be University, Bhubaneswar, India-751030

© 2021 Kundan Kumar, All Rights Reserved

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Neural Networks

1/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

What is Neural Network?

� Neural Networks are networks of neurons, for example, as found in real (i.e.
biological) brains (86 billion neurons).

� Dendrite: Receives signals from other neurons
� Soma/Cell body: Processes the information
� Axon: Transmits the output of this neuron
� Synapse: Point of connection to other neurons

2/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Artificial Neural Network (ANNs)

� Artificial Neural Networks (ANNs) are network of Artificial Neurons and hence
constitute crude approximation to parts of real brains.

� The brain uses chemicals to transmit information; the computer uses electricity.

3/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Why are Artificial Neural Networks worth studying?

� They are extremely powerful computational devices.

� Massive parallelism makes them very efficient.

� They can learn and generalize from training data – so there is no need for enormous
programming skill.

4/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Neural Network Applications

� Real world application
� Financial modeling – predicting the stock market
� Time series prediction – climate, weather, seizures
� Computer games – intelligent agents, chess, backgammon
� Robotics – autonomous adaptable robots
� Pattern recognition – speech recognition, seismic activity, sonar signals
� Data analysis – data compression, data mining
� Bioinformatics – DNA sequencing, alignment

5/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Brain vs. Computers

� Processing elements: There are 1014 synapses in the brain, compared with 108 transistors in the
computer

� Processing speed: 100 Hz for the brain compared to 109 Hz for the computer

� Style of computation: The brain computes in parallel and distributed mode, whereas the computer
mostly serially and centralized.

� Fault tolerant: The brain is fault tolerant, whereas the computer is not.

� Adaptive: The brain learns fast, whereas the computer doesn’t even compare with an infant’s
learning capabilities

� Intelligence and consciousness: The brain is highly intelligent and conscious, whereas the computer
shows lack of intelligence

� Evolution: The brains have been evolving for tens of millions of years, computers have been
evolving for decades.

6/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

An abstract mathematical model of a neuron

� McCulloch and Pitts given a first attempt to form an abstract mathematical model
of a neuron in 1943.

� The binary linear classification model
� receives a finite number of inputs x1, x2, . . . , xd
� computes the weighted sum z =

∑d
i=1 wixi using the weights w1, w2, . . . , wd

� thresholds s and output 0 or 1 depending on whether the weighted sum is less than or
greater than a given threshold value T .

7/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

McCulloch and Pitts Model

As a neuron

This is basically a special case of the neuron-like processing unit from
Lecture 1.

output bias

i'th input

i'th weighty

x1 x2 x3

output

weights

inputs

w1 w2 w3 y = g

�
b +

�

i

xiwi

�

nonlinearity

Today’s question: what can we do with a single unit?

Roger Grosse CSC321 Lecture 3: Linear Classifiers – or – What good is a single neuron? 6 / 248/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Decision Boundaries for AND and OR

8

Decision Boundaries for AND and OR

We can now plot the decision boundaries of our logic gates

111

001

010

000

outI2I1

ANDAND
I1

I2
(0, 0) (0, 1)

(1, 0)
(1, 1)

I1

I2

(1, 1)

(0, 1)(0, 0)

(1, 0)

111

101

110

000

outI2I1

OROR

ANDAND

w1=1, w2=1, θ=1.5

OROR

w1=1, w2=1, θ=0.5

9/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Decision Boundaries for AND and OR

8

Decision Boundaries for AND and OR

We can now plot the decision boundaries of our logic gates

111

001

010

000

outI2I1

ANDAND
I1

I2
(0, 0) (0, 1)

(1, 0)
(1, 1)

I1

I2

(1, 1)

(0, 1)(0, 0)

(1, 0)

111

101

110

000

outI2I1

OROR

ANDAND

w1=1, w2=1, θ=1.5

OROR

w1=1, w2=1, θ=0.5

10/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Limitations Of McCulloch-Pitts Neuron

� What about non-boolean (say, real) inputs?

� Do we always need to hand code the threshold?

� Are all inputs equally important? What if we want to assign more importance to
some inputs?

� What about functions which are not linearly separable? Say XOR function.

11/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Perceptron Model

12/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Perceptron Model

� Overcoming the limitations of the McCulloch-Pitts model, Frank Rosenblatt
proposed the classical perceptron model in 1958.

� Upgraded by Minsky-Papert in 1969.
� More generalize computational model than McCulloch-Pitts model.
� Can learn weights and threshold.

� Difference between McCullock Pitts Neuron and Perceptron:
� In perceptron, weights and bias are allowed to learn (already we did in linear classifiers).
� Not limited to only boolean inputs.

13/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Basic Neural Model of Perceptron

� Input to neurons:
� Input xi arise from other neurons or from

outside the network
� Nodes whose inputs arise outside the network

are called input nodes and simply copy values
� An input may excite or inhibit the response

of the neuron to which it is applied, depending
upon the weight of the connection.

� Synaptic efficacy is modeled using real weight
wi

� The response of the neuron is a nonlinear
function f of its weighted inputs

14/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Single Layer Perceptron

� The perceptron is an algorithm for supervised learning of binary classifiers.

� The perceptron algorithm is also termed the single-layer perceptron, to distinguish
it from a multilayer perceptron.

� The single-layer perceptron is the simplest feedforward neural network.
� Perceptron algorithm

� Input: A set of examples, (x1, y1), (x2, y2), . . . , (xn, yn)
� Output: A perceptron model defined by (w0, w1, . . . , wd)

5.5. MINIMIZING THE PERCEPTRON CRITERION FUNCTION 15

-2
-1

0

1

2
1

2

3

4

0

5

10

-2
-1

0

1

2

a1

a2

J(a)

Figure 5.10: The sequence of weight vectors given by a simple gradient descent method
(red) and by Newton’s (second order) algorithm (black). Newton’s method typically
leads to greater improvement per step, even when using optimal learning rates for both
methods. However the added computational burden of inverting the Hessian matrix
used in Newton’s method is not always justified, and simple descent may suffice.

where Y(a) is the set of samples misclassified by a. (If no samples are misclassified,
Y is empty and we define Jp to be zero.) Since aty ≤ 0 if y is misclassified, Jp(a)
is never negative, being zero only if a is a solution vector, or if a is on the decision
boundary. Geometrically, Jp(a) is proportional to the sum of the distances from the
misclassified samples to the decision boundary. Figure 5.11 illustrates Jp for a simple
two-dimensional example.

Since the jth component of the gradient of Jp is ∂Jp/∂aj , we see from Eq. 16 that

∇Jp =
∑

y∈Y
(−y), (17)

and hence the update rule becomes

a(k + 1) = a(k) + η(k)
∑

y∈Yk

y, (18)

where Yk is the set of samples misclassified by a(k). Thus the Perceptron algorithm
is:

Algorithm 3 (Batch Perceptron)

1 begin initialize a, η(·), criterion θ, k = 0
2 do k ← k + 1
3 a← a + η(k)

∑
y∈Yk

y

4 until η(k)
∑

y∈Yk

y < θ

5 return a
6 end

15/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Single Layer Perceptron

� Other form of Perceptron Learning Rule
� If t = 1 and z = wTx > 0

� then y = 1, so no need to change anything.

� If t = 1 and z < 0
� then y = 0, so we want to make z larger.
� Update:

w← w′ + x

� Justification

w′Tx = (w + x)Tx

= wTx + xTx

= wTx + ||x||

16/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Perceptron Learning Rule

� For convenience, let targets be {−1, 1} instead of our usual {0, 1}.

Figure 2: Visualizing a slice of a 3-dimensional weight space.

the classification model is as follows:

z = wTx (1)

y =

{
1 if z ≥ 0
−1 if z < 0

(2)

Here’s a rough sketch of the perceptron algorithm. We examine each
of the training cases one at a time. For each input x(i), we compute the
prediction y(i) and see if it matches the target t(i). If the prediction is
correct, we do nothing. If it is wrong, we adjust the weights in a direction
that makes it more correct.

Now for the details. First of all, how do we determine if the prediction is
correct? We could simply check if y(i) = t(i), but this has a slight problem:
if x(i) lies exactly on the classification boundary, it is technically classified as
positive according to the above definition. But we don’t want our training
cases to lie on the decision boundary, since this means the classification may
change if the input is perturbed even slightly. We’d like our classifiers to be
more robust than this. Instead, we’ll use the stricter criterion

z(i)t(i) > 0. (3)

You should now check that this criterion correctly handles the various cases
that may occur.

The other question is, how do we adjust the weight vector? If the train-
ing case is positive and we classify it as negative, we’d like to increase the
value of z. In other words, we’d like

z′ = w′Tx > wTx = z, (4)

where w′ and w are the new and old weight vectors, respectively. The
perceptron algorithm achieves this using the update

w′ = w + αx, (5)

where α > 0. We now check that (4) is satisfied:

w′Tx = (w + αx)Tx (6)

= wTx + αxTx (7)

= wTx + α‖x‖2. (8)

7

� Perceptron Learning Rule:

Here, ‖x‖ represents the Euclidean norm of x. Since the squared norm is
always positive, we have z′ > z.

Conversely, if it’s a negative example which we mistakenly classified as
positive, we want to decrease z, so we use a negative value of α. Since it’s
possible to show that the absolute value of α doesn’t matter, we generally
use α = 1 for positive cases and α = −1 for negative cases. We can denote
this compactly with

w← w + tx. (9)

This rule is known as the perceptron learning rule.
Now we write out the perceptron algorithm in full:

For each training case (x(i), t(i)),

z(i) ← wTx(i)

If z(i)t(i) ≤ 0,

w← w + t(i)x(i)

In thinking about this algorithm, remember that we’re denoting the classes
with -1 and 1 (rather than 0 and 1, as we do in the rest of the course).

5 The limits of linear classifiers

Linear classifiers can represent a lot of things, but they can’t represent
everything. The classic example of what they can’t represent is the XOR
function. It should be pretty obvious from inspection that you can’t draw
a line separating the two classes. But how do we actually prove this?

5.1 Convex sets

An important geometric concept which helps us out here is convexity. A
set S is convex if the line segment connecting any two points in S must lie
within S. It’s not too hard to show that if S is convex, then any weighted
average of points in S must also lie within S. A weighted average of points
x(1), . . . ,x(N) is a point given by the linear combination

x(avg) = λ1x
(1) + · · ·+ λNx(N),

where 0 ≤ λi ≤ 1 and λ1 + · · · + λN = 1. You can think of the weighted
average as the center of mass, where the mass of each point is given by λi.

In the context of binary classification, there are two important sets that
are always convex:

1. In data space, the positive and negative regions are both convex. Both
regions are half-spaces, and it should be visually obvious that half-
spaces are convex. This implies that if inputs x(1), . . . ,x(N) are all
in the positive region, then any weighted average must also be in the
positive region. Similarly for the negative region.

2. In weight space, the feasible region is convex. The rough mathematical
argument is as follows. Each good region (the set of weights which
correctly classify one data point) is convex because it’s a half-space.
The feasible region is the intersection of all the good regions, so it
must be convex because the intersection of convex sets is convex.

8

17/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Perceptron Learning Rule

� How can we define a sensible learning criterion when the dataset isn’t linearly
separable?

� Why classification error and squared error are problematic cost functions for
classification?

� Recall from linear classifier, can we apply gradient descent to update the weights?
� If yes then which cost/criteria function will be appropriate?
� Gradient Descent Algorithm to update the weights and bias:

5.4. THE TWO-CATEGORY LINEARLY-SEPARABLE CASE 13

solution
region

y1

y2

y3

a1

a2

solution
region

a2

a1

y1

y2

y3

b/||y
2 ||

b/||y 1
||

b/
||y

3
||

}

}

}

Figure 5.9: The effect of the margin on the solution region. At the left, the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the
right is the case b > 0, shrinking the solution region by margins b/‖yi‖.

distance from a(1) in the direction of steepest descent, i.e., along the negative of the
gradient. In general, a(k + 1) is obtained from a(k) by the equation

a(k + 1) = a(k)− η(k)∇J(a(k)), (12)

where η is a positive scale factor or learning rate that sets the step size. We hope learning
ratethat such a sequence of weight vectors will converge to a solution minimizing J(a).

In algorithmic form we have:

Algorithm 1 (Basic gradient descent)

1 begin initialize a, criterion θ, η(·), k = 0
2 do k ← k + 1
3 a← a− η(k)∇J(a)
4 until η(k)∇J(a) < θ
5 return a
6 end

The many problems associated with gradient descent procedures are well known.
Fortunately, we shall be constructing the functions we want to minimize, and shall be
able to avoid the most serious of these problems. One that will confront us repeatedly,
however, is the choice of the learning rate η(k). If η(k) is too small, convergence is
needlessly slow, whereas if η(k) is too large, the correction process will overshoot and
can even diverge (Sect. 5.6.1).

We now consider a principled method for setting the learning rate. Suppose that
the criterion function can be well approximated by the second-order expansion around
a value a(k) as

J(a)
 J(a(k)) + ∇J t(a− a(k)) +
1

2
(a− a(k))tH (a− a(k)), (13)

where H is the Hessian matrix of second partial derivatives ∂2J/∂ai∂aj evaluated at Hessian
matrixa(k). Then, substituting a(k + 1) from Eq. 12 into Eq. 13 we find:

18/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

0− 1 Loss criteria function

In the last lecture, our goal was to correctly classify every training exam-
ple. But this might be impossible if the dataset isn’t linearly separable.
Even if it’s possible to correctly classify every training example, it may be
undesirable since then we might just overfit!

How can we define a sensible learning criterion when the dataset isn’t
linearly separable? One natural criterion is to minimize the number of mis-
classified training examples. We can formalize this with the classification
error loss, or the 0-1 loss:

L0−1(y, t) =

{
0 if y = t
1 otherwise.

(2)

As always, the cost function is just the loss averaged over the training
examples; in this case, that corresponds to the error rate, or fraction of
misclassified examples. How do we make this small?

2.1 Attempt 1: 0-1 loss

As a first attempt, let’s try to minimize 0-1 loss directly. In order to compute
the gradient descent updates, we need to compute the partial derivatives
∂L0−1/∂wj . Rather than mechanically deriving this derivative, let’s think
about what it means. It means, how much does L0−1 change if you make a
very small change to wj? As long as we’re not on the classification boundary,
making a small enough change to wj will have no effect on L0−1, because
the prediction won’t change. This implies that ∂L0−1/∂wj = 0, as long as
we’re not on the boundary. Gradient descent will go nowhere. (If we are on
the boundary, the cost is discontinuous, which certainly isn’t any better!)
OK, we certainly can’t optimize 0-1 loss with gradient descent. Near the end of the course, when

we discuss reinforcement learning,
we’ll see an algorithm which can
minimize 0-1 loss directly. It’s
nowhere near as efficient as
gradient descent, though, so we
still need the techniques of this
lecture!

2.2 Attempt 2: linear regression

Since that didn’t work, let’s try using something we already know: linear
regression. Recall that this assumes a linear model and the squared error
loss function:

y = w>x + b (3)

LSE(y, t) =
1

2
(y − t)2 (4)

We’ve already seen two ways of optimizing this: gradient descent, and a
closed-form solution. But does it make sense for classification? One obvious
problem is that the predictions are real-valued rather than binary. But
that’s OK, since we can just pick some scheme for binarizing them, such
as thresholding at y = 1/2. When we replace a loss function we trust with
another one we trust less but which is easier to optimize, the replacement
one is called a surrogate loss function.

But there’s still a problem. Suppose we have a positive example, i.e. t =
1. If we predict y = 1, we get a cost of 0, whereas if we make the wrong
prediction y = 0, we get a cost of 1/2; so far, so good. But suppose we’re
really confident that this is a positive example, and predict y = 9. Then we
pay a cost of 1

2(9− 1)2 = 32. This is far higher than the cost for y = 0, so
the learning algorithm will try very hard to prevent this from happening.

2

� This is the same criteria function that we used earlier.

� Problem: how to optimize?

� Chain rule:
∂L0−1
∂wj

=
∂L0−1
∂z

∂z

∂wj

� But ∂L0−1

∂z is zero everywhere it’s defined!

�
∂L0−1

∂wj
means that changing the weights by a very small amount probably has no effect

on the loss.
� The gradient descent update is a no-op.

19/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Squared Error Loss Function

In the last lecture, our goal was to correctly classify every training exam-
ple. But this might be impossible if the dataset isn’t linearly separable.
Even if it’s possible to correctly classify every training example, it may be
undesirable since then we might just overfit!

How can we define a sensible learning criterion when the dataset isn’t
linearly separable? One natural criterion is to minimize the number of mis-
classified training examples. We can formalize this with the classification
error loss, or the 0-1 loss:

L0−1(y, t) =

{
0 if y = t
1 otherwise.

(2)

As always, the cost function is just the loss averaged over the training
examples; in this case, that corresponds to the error rate, or fraction of
misclassified examples. How do we make this small?

2.1 Attempt 1: 0-1 loss

As a first attempt, let’s try to minimize 0-1 loss directly. In order to compute
the gradient descent updates, we need to compute the partial derivatives
∂L0−1/∂wj . Rather than mechanically deriving this derivative, let’s think
about what it means. It means, how much does L0−1 change if you make a
very small change to wj? As long as we’re not on the classification boundary,
making a small enough change to wj will have no effect on L0−1, because
the prediction won’t change. This implies that ∂L0−1/∂wj = 0, as long as
we’re not on the boundary. Gradient descent will go nowhere. (If we are on
the boundary, the cost is discontinuous, which certainly isn’t any better!)
OK, we certainly can’t optimize 0-1 loss with gradient descent. Near the end of the course, when

we discuss reinforcement learning,
we’ll see an algorithm which can
minimize 0-1 loss directly. It’s
nowhere near as efficient as
gradient descent, though, so we
still need the techniques of this
lecture!

2.2 Attempt 2: linear regression

Since that didn’t work, let’s try using something we already know: linear
regression. Recall that this assumes a linear model and the squared error
loss function:

y = w>x + b (3)

LSE(y, t) =
1

2
(y − t)2 (4)

We’ve already seen two ways of optimizing this: gradient descent, and a
closed-form solution. But does it make sense for classification? One obvious
problem is that the predictions are real-valued rather than binary. But
that’s OK, since we can just pick some scheme for binarizing them, such
as thresholding at y = 1/2. When we replace a loss function we trust with
another one we trust less but which is easier to optimize, the replacement
one is called a surrogate loss function.

But there’s still a problem. Suppose we have a positive example, i.e. t =
1. If we predict y = 1, we get a cost of 0, whereas if we make the wrong
prediction y = 0, we get a cost of 1/2; so far, so good. But suppose we’re
really confident that this is a positive example, and predict y = 9. Then we
pay a cost of 1

2(9− 1)2 = 32. This is far higher than the cost for y = 0, so
the learning algorithm will try very hard to prevent this from happening.

2

� Doesn’t matter that the targets are actually binary.

� Threshold predictions at y = 1/2

Attempt 2: Linear Regression

The problem:

The loss function hates when you make correct predictions with high
confidence!

If t = 1, it’s more unhappy about y = 10 than y = 0.

Roger Grosse CSC321 Lecture 4: Learning a Classifier 8 / 31

� The loss function hates when you make correct predictions with high confidence!

� If t = 1, it’s more unhappy about y = 10 than y = 0.

20/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Logistic nonlinearity

� There’s obviously no reason to predict values outside [0, 1]. Let’s squash y into this
interval.

� The logistic function is a kind of sigmoidal, or S-shaped, function:

That’s not bad in itself, but it means that something else might need to be
sacrificed, if it’s impossible to match all of the targets exactly. Perhaps the
sacrifice will be that it incorrectly classifies some other training examples.

2.3 Attempt 3: logistic nonlinearity

The problem with linear regression is that the predictions were allowed to
take arbitrary real values. But it makes no sense to predict anything smaller
than 0 or larger than 1. If you predict y > 1, then

regardless of the target, you can
decrease the loss by setting y = 1.
Similarly for y < 0.

Let’s fix this problem by applying a nonlinearity,
or activation function, which squashes the predictions to be between 0
and 1. In particular, we’ll use something called the logistic function:

σ(z) =
1

1 + e−z
. (5)

This is a kind of sigmoidal, or S-shaped, function:

What’s important about this function is that it increases monotonically,
with asymptotes at 0 and 1. (Plus, it’s smooth, so we can compute deriva-
tives.) Another advantage of the logistic

function is that calculations tend
to work out very nicely.

We refine the model as follows:

z = w>x + b (6)

y = σ(z) (7)

LSE(y, t) =
1

2
(y − t)2. (8)

Notice that this model solves the problem we observed with linear regression.
As the predictions get more and more confident on the correct answer, the
loss continues to decrease.

To derive the gradient descent updates, we’ll need the partial derivatives
of the cost function. We’ll do this by applying the Chain Rule twice: first
to compute dLSE/dz, and then again to compute ∂LSE/∂wj . But first, let’s
note the convenient fact that This is equivalent to the elegant

identity σ′(z) = σ(z)(1− σ(z)).

∂y

∂z
=

e−z

(1 + e−z)2

= y(1− y). (9)

3

That’s not bad in itself, but it means that something else might need to be
sacrificed, if it’s impossible to match all of the targets exactly. Perhaps the
sacrifice will be that it incorrectly classifies some other training examples.

2.3 Attempt 3: logistic nonlinearity

The problem with linear regression is that the predictions were allowed to
take arbitrary real values. But it makes no sense to predict anything smaller
than 0 or larger than 1. If you predict y > 1, then

regardless of the target, you can
decrease the loss by setting y = 1.
Similarly for y < 0.

Let’s fix this problem by applying a nonlinearity,
or activation function, which squashes the predictions to be between 0
and 1. In particular, we’ll use something called the logistic function:

σ(z) =
1

1 + e−z
. (5)

This is a kind of sigmoidal, or S-shaped, function:

What’s important about this function is that it increases monotonically,
with asymptotes at 0 and 1. (Plus, it’s smooth, so we can compute deriva-
tives.) Another advantage of the logistic

function is that calculations tend
to work out very nicely.

We refine the model as follows:

z = w>x + b (6)

y = σ(z) (7)

LSE(y, t) =
1

2
(y − t)2. (8)

Notice that this model solves the problem we observed with linear regression.
As the predictions get more and more confident on the correct answer, the
loss continues to decrease.

To derive the gradient descent updates, we’ll need the partial derivatives
of the cost function. We’ll do this by applying the Chain Rule twice: first
to compute dLSE/dz, and then again to compute ∂LSE/∂wj . But first, let’s
note the convenient fact that This is equivalent to the elegant

identity σ′(z) = σ(z)(1− σ(z)).

∂y

∂z
=

e−z

(1 + e−z)2

= y(1− y). (9)

3

� A linear model with a logistic nonlinearity is known as log-linear:

That’s not bad in itself, but it means that something else might need to be
sacrificed, if it’s impossible to match all of the targets exactly. Perhaps the
sacrifice will be that it incorrectly classifies some other training examples.

2.3 Attempt 3: logistic nonlinearity

The problem with linear regression is that the predictions were allowed to
take arbitrary real values. But it makes no sense to predict anything smaller
than 0 or larger than 1. If you predict y > 1, then

regardless of the target, you can
decrease the loss by setting y = 1.
Similarly for y < 0.

Let’s fix this problem by applying a nonlinearity,
or activation function, which squashes the predictions to be between 0
and 1. In particular, we’ll use something called the logistic function:

σ(z) =
1

1 + e−z
. (5)

This is a kind of sigmoidal, or S-shaped, function:

What’s important about this function is that it increases monotonically,
with asymptotes at 0 and 1. (Plus, it’s smooth, so we can compute deriva-
tives.) Another advantage of the logistic

function is that calculations tend
to work out very nicely.

We refine the model as follows:

z = w>x + b (6)

y = σ(z) (7)

LSE(y, t) =
1

2
(y − t)2. (8)

Notice that this model solves the problem we observed with linear regression.
As the predictions get more and more confident on the correct answer, the
loss continues to decrease.

To derive the gradient descent updates, we’ll need the partial derivatives
of the cost function. We’ll do this by applying the Chain Rule twice: first
to compute dLSE/dz, and then again to compute ∂LSE/∂wj . But first, let’s
note the convenient fact that This is equivalent to the elegant

identity σ′(z) = σ(z)(1− σ(z)).

∂y

∂z
=

e−z

(1 + e−z)2

= y(1− y). (9)

3

� Used in this way, σ is called an activation function, and z is called the logit.

21/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Logistic nonlinearity: chain rule

� Chain Rule: derivative with respect to the weights

Figure 1: Visualization of derivatives of squared error loss with logistic
nonlinearity, for a training example with t = 1. The derivative dE/dz
corresponds to the slope of the tangent line.

Now for the Chain Rule:

dLSE
dz

=
dLSE

dy

dy

dz

= (y − t)y(1− y) (10)

∂LSE
∂wj

=
dLSE

dz

∂z

∂wj

=
dLSE

dz
· xj . (11)

Done! At this point, you should stop and
sanity check the equations we just
derived, e.g. checking that they
have the sign that they ought to.
Get in the habit of doing this.

Why don’t we go one step further and plug Eqn. 10 into Eqn. 11?
The reason is that our goal isn’t to compute a formula for ∂LSE/∂wj ; as
computer scientists, our goal is to come up with a procedure for computing
it. The two formulas above give us a procedure which we can implement
directly in Python. One advantage of doing it this way is that we can reuse
some of the work we’ve done in computing the derivative with respect to
the bias: Reusing computation of derivatives

is one of the main insights behind
backpropagation, one of the
central algorithms in this course.

dLSE
db

=
dLSE

dz

∂z

∂b

=
dLSE

dz
(12)

If we had expanded out the entire formula, it might not be obvious to us
that we can reuse computation like this.

So far, so good. But there’s one hitch. Let’s suppose you classify one
of the training examples extremely wrong, e.g. you confidently predict a
negative label with z = −5, which gives y ≈ 0.0067, for a positive example
(i.e. t = 1). Plugging these values into Eqn 10, we find that ∂LSE/∂z ≈
−0.0066. This is a pretty small value, considering how big the mistake
was. As shown in Figure 1, the more confident the wrong prediction, the
smaller the gradient is! The most badly misclassified examples will have
hardly any effect on the training. This doesn’t seem very good. We say
the learning algorithm does not have a strong gradient signal for those
training examples.

4

� derivative with respect to the bias:

Figure 1: Visualization of derivatives of squared error loss with logistic
nonlinearity, for a training example with t = 1. The derivative dE/dz
corresponds to the slope of the tangent line.

Now for the Chain Rule:

dLSE
dz

=
dLSE

dy

dy

dz

= (y − t)y(1− y) (10)

∂LSE
∂wj

=
dLSE

dz

∂z

∂wj

=
dLSE

dz
· xj . (11)

Done! At this point, you should stop and
sanity check the equations we just
derived, e.g. checking that they
have the sign that they ought to.
Get in the habit of doing this.

Why don’t we go one step further and plug Eqn. 10 into Eqn. 11?
The reason is that our goal isn’t to compute a formula for ∂LSE/∂wj ; as
computer scientists, our goal is to come up with a procedure for computing
it. The two formulas above give us a procedure which we can implement
directly in Python. One advantage of doing it this way is that we can reuse
some of the work we’ve done in computing the derivative with respect to
the bias: Reusing computation of derivatives

is one of the main insights behind
backpropagation, one of the
central algorithms in this course.

dLSE
db

=
dLSE

dz

∂z

∂b

=
dLSE

dz
(12)

If we had expanded out the entire formula, it might not be obvious to us
that we can reuse computation like this.

So far, so good. But there’s one hitch. Let’s suppose you classify one
of the training examples extremely wrong, e.g. you confidently predict a
negative label with z = −5, which gives y ≈ 0.0067, for a positive example
(i.e. t = 1). Plugging these values into Eqn 10, we find that ∂LSE/∂z ≈
−0.0066. This is a pretty small value, considering how big the mistake
was. As shown in Figure 1, the more confident the wrong prediction, the
smaller the gradient is! The most badly misclassified examples will have
hardly any effect on the training. This doesn’t seem very good. We say
the learning algorithm does not have a strong gradient signal for those
training examples.

4

22/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Cross-Entropy Loss

� Cross-entropy (CE) is defined as follows:

Figure 2: Plot of cross-entropy loss as a function of the input z to the
logistic activation function.

The problem with squared error loss in the classification setting is that
it doesn’t distinguish bad predictions from extremely bad predictions. Think about how the argument in

this paragraph relates to the one
in the previous paragraph.

If
t = 1, then a prediction of y = 0.01 has roughly the same squared-error
loss as a prediction of y = 0.00001, even though in some sense the latter is
more wrong. This isn’t necessarily a problem in terms of the cost function
itself: whether 0.00001 is inherently much worse than 0.01 depends on the
situation. (If all we care about is classification error, they’re essentially
equivalent.) But from the perspective of optimization, the fact that the
losses are nearly equivalent is a big problem. Actually, the effect discussed here

can also be beneficial, because it
makes the algorithm robust, in that
it can learn to ignore mislabeled
examples. Cost functions like this
are sometimes used for this reason.
However, when you do use it, you
should be aware of the
optimization difficulties it creates!

If we can increase y from
0.00001 to 0.0001, that means we’re “getting warmer,” but this doesn’t
show up in the squared-error loss. We’d like a loss function which reflects
our intuitive notion of getting warmer.

2.4 Final touch: cross-entropy loss

The problem with squared-error loss is that it treats y = 0.01 and y =
0.00001 as nearly equivalent (for a positive example). We’d like a loss
function which makes these very different. One such loss function is cross-
entropy (CE). You’ll sometimes see cross-entropy

abbreviated XE.
This is defined as follows:

LCE(y, t) =

{
− log y if t = 1
− log 1− y if t = 0

(13)

In our earlier example, we see that LCE(0.01, 1) = 4.6, whereas LCE(0.00001, 1) =
11.5, so cross-entropy treats the latter as much worse than the former.

When we do calculations, it’s cumbersome to use the case notation, so
we instead rewrite Eqn. 13 in the following form. You should check that
they are equivalent:

LCE(y, t) = −t log y − (1− t) log 1− y. (14)

Remember, See if you can derive the equations
for the asymptote lines.

the logistic function squashes y to be between 0 and 1, but
cross-entropy draws big distinctions between probabilities close to 0 or 1.
Interestingly, these effects cancel out: Figure 2 plots the loss as a function
of z. You get a sizable gradient signal even when the predictions are very
wrong.

5

Figure 2: Plot of cross-entropy loss as a function of the input z to the
logistic activation function.

The problem with squared error loss in the classification setting is that
it doesn’t distinguish bad predictions from extremely bad predictions. Think about how the argument in

this paragraph relates to the one
in the previous paragraph.

If
t = 1, then a prediction of y = 0.01 has roughly the same squared-error
loss as a prediction of y = 0.00001, even though in some sense the latter is
more wrong. This isn’t necessarily a problem in terms of the cost function
itself: whether 0.00001 is inherently much worse than 0.01 depends on the
situation. (If all we care about is classification error, they’re essentially
equivalent.) But from the perspective of optimization, the fact that the
losses are nearly equivalent is a big problem. Actually, the effect discussed here

can also be beneficial, because it
makes the algorithm robust, in that
it can learn to ignore mislabeled
examples. Cost functions like this
are sometimes used for this reason.
However, when you do use it, you
should be aware of the
optimization difficulties it creates!

If we can increase y from
0.00001 to 0.0001, that means we’re “getting warmer,” but this doesn’t
show up in the squared-error loss. We’d like a loss function which reflects
our intuitive notion of getting warmer.

2.4 Final touch: cross-entropy loss

The problem with squared-error loss is that it treats y = 0.01 and y =
0.00001 as nearly equivalent (for a positive example). We’d like a loss
function which makes these very different. One such loss function is cross-
entropy (CE). You’ll sometimes see cross-entropy

abbreviated XE.
This is defined as follows:

LCE(y, t) =

{
− log y if t = 1
− log 1− y if t = 0

(13)

In our earlier example, we see that LCE(0.01, 1) = 4.6, whereas LCE(0.00001, 1) =
11.5, so cross-entropy treats the latter as much worse than the former.

When we do calculations, it’s cumbersome to use the case notation, so
we instead rewrite Eqn. 13 in the following form. You should check that
they are equivalent:

LCE(y, t) = −t log y − (1− t) log 1− y. (14)

Remember, See if you can derive the equations
for the asymptote lines.

the logistic function squashes y to be between 0 and 1, but
cross-entropy draws big distinctions between probabilities close to 0 or 1.
Interestingly, these effects cancel out: Figure 2 plots the loss as a function
of z. You get a sizable gradient signal even when the predictions are very
wrong.

5

� When we combine the logistic activation function with cross-entropy loss, you get
logistic regression:

When we combine the logistic activation function with cross-entropy
loss, you get logistic regression:

z = w>x + b

y = σ(z)

LCE = −t log y − (1− t) log 1− y.
(15)

Now let’s compute the derivatives. We’ll do it two different ways: the
mechanical way, and the clever way. Let’s do the mechanical way first, as
an example of the chain rule for derivatives. Remember, our job here isn’t
to produce a formula for the derivatives, the way we would in calculus class.
Our job is to give a procedure for computing the derivatives which we could
translate into NumPy code. The following does that: The second step of this derivation

uses Eqn. 9.

dLCE

dy
= − t

y
+

1− t
1− y

dLCE

dz
=

dLCE

dy

dy

dz

=
dLCE

dy
· y(1− y)

∂LCE

∂wj
=

dLCE

dz

∂z

∂wj

=
dLCE

dz
· xj

(16)

This can be translated directly into NumPy (exercise: how do you vec-
torize this?). If we were good little computer scientists, we would stop here.
But today we’re going to be naughty computer scientists and break the
abstraction barrier between the activation function (logistic) and the cost
function (cross-entropy).

2.5 Logistic-cross-entropy function

There’s a big problem with Eqns. 15 and 16: what happens if we have a
positive example (t = 1), but we confidently classify it as a negative example
(z � 0, implying y ≈ 0)? This is likely to happen at the very beginning
of training, so we should be able to handle it. But if y is small enough, it
could be smaller than the smallest floating point value, i.e. numerically
zero. Then when we compute the cross-entropy, we take the log of 0 and
get −∞. Or if this doesn’t happen, think about Eqn. 16. Since y appears
in the denominator, dLCE/dy will be extremely large in magnitude, which
again can cause numerical difficulties. These bugs are very subtle, and can
be hard to track down if you don’t expect them.

What we do instead is combine the logistic function and cross-entropy
loss into a single function, which we term logistic-cross-entropy:

LLCE(z, t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez) (17)

This still isn’t numerically stable if we implement it directly, since ez could
blow up. But most scientific computing environments provide a numerically

6

23/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Cross-Entropy Loss: Chain rule

� Chain rule:

When we combine the logistic activation function with cross-entropy
loss, you get logistic regression:

z = w>x + b

y = σ(z)

LCE = −t log y − (1− t) log 1− y.
(15)

Now let’s compute the derivatives. We’ll do it two different ways: the
mechanical way, and the clever way. Let’s do the mechanical way first, as
an example of the chain rule for derivatives. Remember, our job here isn’t
to produce a formula for the derivatives, the way we would in calculus class.
Our job is to give a procedure for computing the derivatives which we could
translate into NumPy code. The following does that: The second step of this derivation

uses Eqn. 9.

dLCE

dy
= − t

y
+

1− t
1− y

dLCE

dz
=

dLCE

dy

dy

dz

=
dLCE

dy
· y(1− y)

∂LCE

∂wj
=

dLCE

dz

∂z

∂wj

=
dLCE

dz
· xj

(16)

This can be translated directly into NumPy (exercise: how do you vec-
torize this?). If we were good little computer scientists, we would stop here.
But today we’re going to be naughty computer scientists and break the
abstraction barrier between the activation function (logistic) and the cost
function (cross-entropy).

2.5 Logistic-cross-entropy function

There’s a big problem with Eqns. 15 and 16: what happens if we have a
positive example (t = 1), but we confidently classify it as a negative example
(z � 0, implying y ≈ 0)? This is likely to happen at the very beginning
of training, so we should be able to handle it. But if y is small enough, it
could be smaller than the smallest floating point value, i.e. numerically
zero. Then when we compute the cross-entropy, we take the log of 0 and
get −∞. Or if this doesn’t happen, think about Eqn. 16. Since y appears
in the denominator, dLCE/dy will be extremely large in magnitude, which
again can cause numerical difficulties. These bugs are very subtle, and can
be hard to track down if you don’t expect them.

What we do instead is combine the logistic function and cross-entropy
loss into a single function, which we term logistic-cross-entropy:

LLCE(z, t) = LCE(σ(z), t) = t log(1 + e−z) + (1− t) log(1 + ez) (17)

This still isn’t numerically stable if we implement it directly, since ez could
blow up. But most scientific computing environments provide a numerically

6

24/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Example on perceptron

Question Compute the updated weights and bias using perceptron algorithm to model
the AND gate. Consider the initial weight and bias as 0 and learning rate as 0.5.

25/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Perceptron Model: Multiclass Problem

26/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Multiclass classification

� What about classification tasks with more than two categories?

� Targets form a discrete set {1, . . . ,K}
� It’s often more convenient to represent them as one-hot vectors, or a one-of-K

encoding:

for a surrogate loss function, since it means that if you make the hinge loss
small, you’ve also made 0–1 loss small. A linear model with hinge loss is
known as a support vector machine (SVM):

y = w>x + b (19)

LH = max(0, 1− ty) (20)

If you take CSC411, you’ll learn a lot about SVMs, including their statis-
tical motivation, how to optimize them efficiently and how to make them
nonlinear (using something called the “kernel trick”). But you already know
one optimization method: you already know enough to derive the gradient
descent updates for an SVM.

Interestingly, even though SVMs came from a different community and
had a different sort of motivation from logistic regression, the algorithms
behave very similarly in practice. The reason has to do with the loss func-
tions. Figure 3 compares hinge loss to cross-entropy loss; even though cross-
entropy is smoother, the asymptotic behavior is the same, suggesting the
loss functions are basically pretty similar.

All of the loss functions covered so far is shown in Figure 3. Take the
time to review them, to understand their strengths and weaknesses.

3 Multiclass classification

So far we’ve talked about binary classification, but most classification prob-
lems involve more than two categories. Fortunately, this doesn’t require any
new ideas: everything pretty much works by analogy with the binary case.
The first question is how to represent the targets. We could represent them
as integers, but it’s more convenient to use a one-hot vector, also called
a one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

(21)

Now let’s design the whole model by analogy with the binary case.
First of all, consider the linear part of the model. We have K outputs

and D inputs. To represent a linear function, we’ll need a K ×D weight
matrix, as well as a K-dimensional bias vector. We first compute the
intermediate quantities as follows:

z = Wx + b. (22)

This is the general form of a linear function from RD to RK .
Next, the activation function. We saw that the logistic function was a

good thing to use in the binary case. There’s a multivariate generalization
of the logistic function called the softmax function: Try plugging in K = 2 to figure

out how the softmax relates to the
logistic function.

yk = softmax(z1, . . . , zK)k =
ezk∑
k′ e

zk′
(23)

Importantly, the outputs of the softmax function are nonnegative and sum
to 1, so they can be interpreted as a probability distribution over the K

8

� Now there are d input dimensions and K output dimensions, so we need K × d
weights, which we arrange as a weight matrix W .

� Also, we have a K-dimensional vector b of biases.

27/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Multiclass classification

� Linear predictions:

zk =
∑

j

wkjxj + bk

� Vectorized:
z =Wx + b

Multiclass Classification

Now there are D input dimensions and K output dimensions, so we
need K × D weights, which we arrange as a weight matrix W.

Also, we have a K -dimensional vector b of biases.

Linear predictions:

zk =
∑

j

wkjxj + bk

Vectorized:
z = Wx + b

Roger Grosse CSC321 Lecture 4: Learning a Classifier 20 / 31

28/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Multiclass classification

� A natural activation function to use is the softmax function, a multivariable
generalization of the logistic function:

for a surrogate loss function, since it means that if you make the hinge loss
small, you’ve also made 0–1 loss small. A linear model with hinge loss is
known as a support vector machine (SVM):

y = w>x + b (19)

LH = max(0, 1− ty) (20)

If you take CSC411, you’ll learn a lot about SVMs, including their statis-
tical motivation, how to optimize them efficiently and how to make them
nonlinear (using something called the “kernel trick”). But you already know
one optimization method: you already know enough to derive the gradient
descent updates for an SVM.

Interestingly, even though SVMs came from a different community and
had a different sort of motivation from logistic regression, the algorithms
behave very similarly in practice. The reason has to do with the loss func-
tions. Figure 3 compares hinge loss to cross-entropy loss; even though cross-
entropy is smoother, the asymptotic behavior is the same, suggesting the
loss functions are basically pretty similar.

All of the loss functions covered so far is shown in Figure 3. Take the
time to review them, to understand their strengths and weaknesses.

3 Multiclass classification

So far we’ve talked about binary classification, but most classification prob-
lems involve more than two categories. Fortunately, this doesn’t require any
new ideas: everything pretty much works by analogy with the binary case.
The first question is how to represent the targets. We could represent them
as integers, but it’s more convenient to use a one-hot vector, also called
a one-of-K encoding:

t = (0, . . . , 0, 1, 0, . . . , 0)︸ ︷︷ ︸
entry k is 1

(21)

Now let’s design the whole model by analogy with the binary case.
First of all, consider the linear part of the model. We have K outputs

and D inputs. To represent a linear function, we’ll need a K ×D weight
matrix, as well as a K-dimensional bias vector. We first compute the
intermediate quantities as follows:

z = Wx + b. (22)

This is the general form of a linear function from RD to RK .
Next, the activation function. We saw that the logistic function was a

good thing to use in the binary case. There’s a multivariate generalization
of the logistic function called the softmax function: Try plugging in K = 2 to figure

out how the softmax relates to the
logistic function.

yk = softmax(z1, . . . , zK)k =
ezk∑
k′ e

zk′
(23)

Importantly, the outputs of the softmax function are nonnegative and sum
to 1, so they can be interpreted as a probability distribution over the K

8

� The inputs zk are called the logits.
� Properties:

� Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
� If one of the zk’s is much larger than the others, softmax(z) is approximately the

argmax. (So really it’s more like “soft-argmax”.)
� Exercise: how does the case of K = 2 relate to the logistic function?

� Note: sometimes σ(z) is used to denote the softmax function.

29/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Multiclass classification

� If a model outputs a vector of class probabilities, we can use cross-entropy as the
loss function:

classes (just like the output of the logistic could be interpreted as a prob-
ability). The inputs to the softmax are called the logits. Think about the logits as the

“log-odds”, because when you
exponentiate them you get the
odds ratios of the probabilities.

Note that when
one of the zk’s is much larger than the others, the output of the softmax
will be approximately the argmax, in the one-hot encoding. Hence, a more
accurate name might be “soft-argmax.”

Finally, the loss function. Cross-entropy can be generalized to the
multiple-output case: You’ll sometimes see σ(z) used to

denote the softmax function, by
analogy with the logistic. But in
this course, it will always denote
the logistic function.

LCE(y, t) = −
K∑

k=1

tk log yk

= −t>(log y).

Here, log y represents the elementwise log. Note that only one of the tk’s is
1 and the rest are 0, so the summation has the effect of picking the relevant
entry of the vector log y. (See how convenient the one-hot notation is?)

Try plugging in K = 2 to see how
this relates to binary cross-entropy.

Note that this loss function only makes sense for predictions which sum to
1; if you eliminate that constraint, you could trivially minimize the loss by
making all the yk’s large.

When we put these things together, we get multiclass logistic regres-
sion, or softmax regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

We won’t go through the derivatives in detail, but it basically works out
exactly like logistic regression. The softmax and cross-entropy functions
interact nicely with each other, so we always combine them into a single
softmax-cross-entropy function LSCE for purposes of numerical stability.
The derivatives of LSCE have the same elegant formula we’ve been seeing
repeatedly, except this time remember that t and y are both vectors:

∂LSCE

∂z
= y − t (24)

Softmax regression is an elegant learning algorithm which can work very
well in practice.

4 Convex Functions

An important criterion we often use to compare different loss functions is
convexity. Recall that a set S is convex if the line segment connecting any
two points in S lies entirely within S. Mathematically, this means that for
x0,x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

The definition of a convex function is closely related. A function f is
convex if for any x0,x1 in the domain of f ,

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) (25)

9

where the log is applied element wise.

� Just like with logistic regression, we typically combine the softmax and
cross-entropy into a softmax-cross-entropy function.

30/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Multiclass classification

� Multiclass logistic regression:

classes (just like the output of the logistic could be interpreted as a prob-
ability). The inputs to the softmax are called the logits. Think about the logits as the

“log-odds”, because when you
exponentiate them you get the
odds ratios of the probabilities.

Note that when
one of the zk’s is much larger than the others, the output of the softmax
will be approximately the argmax, in the one-hot encoding. Hence, a more
accurate name might be “soft-argmax.”

Finally, the loss function. Cross-entropy can be generalized to the
multiple-output case: You’ll sometimes see σ(z) used to

denote the softmax function, by
analogy with the logistic. But in
this course, it will always denote
the logistic function.

LCE(y, t) = −
K∑

k=1

tk log yk

= −t>(log y).

Here, log y represents the elementwise log. Note that only one of the tk’s is
1 and the rest are 0, so the summation has the effect of picking the relevant
entry of the vector log y. (See how convenient the one-hot notation is?)

Try plugging in K = 2 to see how
this relates to binary cross-entropy.

Note that this loss function only makes sense for predictions which sum to
1; if you eliminate that constraint, you could trivially minimize the loss by
making all the yk’s large.

When we put these things together, we get multiclass logistic regres-
sion, or softmax regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

We won’t go through the derivatives in detail, but it basically works out
exactly like logistic regression. The softmax and cross-entropy functions
interact nicely with each other, so we always combine them into a single
softmax-cross-entropy function LSCE for purposes of numerical stability.
The derivatives of LSCE have the same elegant formula we’ve been seeing
repeatedly, except this time remember that t and y are both vectors:

∂LSCE

∂z
= y − t (24)

Softmax regression is an elegant learning algorithm which can work very
well in practice.

4 Convex Functions

An important criterion we often use to compare different loss functions is
convexity. Recall that a set S is convex if the line segment connecting any
two points in S lies entirely within S. Mathematically, this means that for
x0,x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

The definition of a convex function is closely related. A function f is
convex if for any x0,x1 in the domain of f ,

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) (25)

9

� Tutorial: deriving the gradient descent updates

classes (just like the output of the logistic could be interpreted as a prob-
ability). The inputs to the softmax are called the logits. Think about the logits as the

“log-odds”, because when you
exponentiate them you get the
odds ratios of the probabilities.

Note that when
one of the zk’s is much larger than the others, the output of the softmax
will be approximately the argmax, in the one-hot encoding. Hence, a more
accurate name might be “soft-argmax.”

Finally, the loss function. Cross-entropy can be generalized to the
multiple-output case: You’ll sometimes see σ(z) used to

denote the softmax function, by
analogy with the logistic. But in
this course, it will always denote
the logistic function.

LCE(y, t) = −
K∑

k=1

tk log yk

= −t>(log y).

Here, log y represents the elementwise log. Note that only one of the tk’s is
1 and the rest are 0, so the summation has the effect of picking the relevant
entry of the vector log y. (See how convenient the one-hot notation is?)

Try plugging in K = 2 to see how
this relates to binary cross-entropy.

Note that this loss function only makes sense for predictions which sum to
1; if you eliminate that constraint, you could trivially minimize the loss by
making all the yk’s large.

When we put these things together, we get multiclass logistic regres-
sion, or softmax regression:

z = Wx + b

y = softmax(z)

LCE = −t>(log y)

We won’t go through the derivatives in detail, but it basically works out
exactly like logistic regression. The softmax and cross-entropy functions
interact nicely with each other, so we always combine them into a single
softmax-cross-entropy function LSCE for purposes of numerical stability.
The derivatives of LSCE have the same elegant formula we’ve been seeing
repeatedly, except this time remember that t and y are both vectors:

∂LSCE

∂z
= y − t (24)

Softmax regression is an elegant learning algorithm which can work very
well in practice.

4 Convex Functions

An important criterion we often use to compare different loss functions is
convexity. Recall that a set S is convex if the line segment connecting any
two points in S lies entirely within S. Mathematically, this means that for
x0,x1 ∈ S,

(1− λ)x0 + λx1 ∈ S for 0 ≤ λ ≤ 1.

The definition of a convex function is closely related. A function f is
convex if for any x0,x1 in the domain of f ,

f((1− λ)x0 + λx1) ≤ (1− λ)f(x0) + λf(x1) (25)

9

� Softmax regression is an elegant learning algorithm which can work very well in
practice.

31/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Input to Neurons

� Arise from other neurons or from outside the network

� Nodes whose inputs arise outside the network are called input nodes and simply
copy values

� An input may excite or inhibit the response of the neuron to which it is applied,
depending upon the weight of the connection.

32/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Mutlilayer Perceptrons

33/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Mutlilayer Perceptrons

� Feed-forward neural network is a fully
connected directed acyclic graph.

� In contrast to recurrent neural
networks, which can have cycles (out of
the scope of this course).

� Typically, units are grouped together
into layers.

Multilayer Perceptrons

We can connect lots of
units together into a
directed acyclic graph.

This gives a feed-forward
neural network. That’s
in contrast to recurrent
neural networks, which
can have cycles. (We’ll
talk about those later.)

Typically, units are
grouped together into
layers.

Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 4 / 21

Courtesy: Roger Grosse, Lecture Notes

34/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Mutlilayer Perceptrons

� Each layer connects N input units to
M output units. Note: the inputs and
outputs for a layer are distinct from the
inputs and outputs to the network.

� We need an M ×N weight matrix, W .

� The output units are a function of the
input units: y = f(x) = (Wx+ b)

Multilayer Perceptrons

We can connect lots of
units together into a
directed acyclic graph.

This gives a feed-forward
neural network. That’s
in contrast to recurrent
neural networks, which
can have cycles. (We’ll
talk about those later.)

Typically, units are
grouped together into
layers.

Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 4 / 21

Courtesy: Roger Grosse, Lecture Notes

35/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Multilayer Perceptrons

� Some activation functions

−5.0 −2.5 0.0 2.5 5.0

−4

−2

0

2

4

f (z) = z

linear Unit

−5.0 −2.5 0.0 2.5 5.0

0.0

0.5

1.0

f (z) =

{
0 for z ≤ 0

1 for z > 0

binary step

−5.0 −2.5 0.0 2.5 5.0

0.0

0.5

1.0
f (z) = 1

1+e−z

sigmoid

−5.0 −2.5 0.0 2.5 5.0

−4

−2

0

2

4

f (z) = max(0; z)

ReLU

36/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Example: Exclusive OR

� Designing a network to compute XOR: Assume hard threshold activation function

Multilayer Perceptrons

Designing a network to compute XOR:

Assume hard threshold activation function

Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 8 / 21

Multilayer Perceptrons

Roger Grosse CSC321 Lecture 5: Multilayer Perceptrons 9 / 21
37/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Forward-Propagation

� Propagate the input through the network:
� Assume sigmoid activation function,
� Bias is dropped for simplification

yi = f

∑

j

w
(2)
ji f

(∑

k

w
(1)
kj xk

)
 for one hidden layer

axon from a neuron

synapse

dendrite

𝑥0

cell body

+ 𝑏∑
𝑖

𝑤𝑖𝑥𝑖

𝑤1

𝑤2

𝑓

output axon

𝑓 (+ 𝑏)∑
𝑖

𝑤𝑖𝑥𝑖

activation function

𝑥1

𝑥2

𝑤0

𝑦1

𝑦2ℎ2

ℎ1𝑥1

𝑥2

= 0.8𝑥1

= 0.1𝑥2

−0.1

0.1

0.5

0.7

0.9

−0.3

0.5

−0.1

?

?

38/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

Backpropagation Learning Algorithm

will update soon

39/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

References

[1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.

[2] Gose, E. (1997). Pattern recognition and image analysis.

40/41 Kundan Kumar Pattern Classification

Introduction McCulloch and Pitts Model Perceptron Model Choosing a cost function Mutlilayer Perceptrons References

	Introduction
	

	McCulloch and Pitts Model
	

	Perceptron Model
	

	Choosing a cost function
	

	Mutlilayer Perceptrons
	

	References
	

