McCulloch an	Pi

References 00

Pattern Classification EET3053

Dr. Kundan Kumar Associate Professor Department of ECE

Faculty of Engineering (ITER) S'O'A Deemed to be University, Bhubaneswar, India-751030 © 2021 Kundan Kumar, All Rights Reserved

Introduction ●00000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00

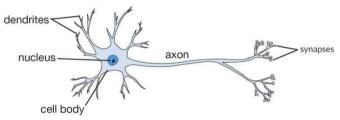
Neural Networks

Introduction 0●0000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00

What is Neural Network?

Neural Networks are networks of neurons, for example, as found in real (i.e. biological) brains (86 billion neurons).

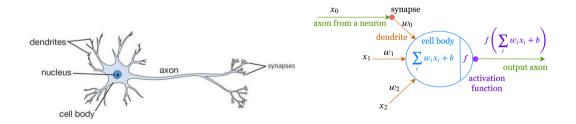
Biological Neuron



- Dendrite: Receives signals from other neurons
- □ Soma/Cell body: Processes the information
- □ Axon: Transmits the output of this neuron
- □ Synapse: Point of connection to other neurons

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons 0000000	References 00
Artifici	al Neural Networ	k (ANNs)			

- Artificial Neural Networks (ANNs) are network of Artificial Neurons and hence constitute crude approximation to parts of real brains.
- The brain uses chemicals to transmit information; the computer uses electricity.



Why are Artificial Neural Networks worth studying?

- They are extremely powerful computational devices.
- Massive parallelism makes them very efficient.
- They can learn and generalize from training data so there is no need for enormous programming skill.

Neural Network Applications

Real world application

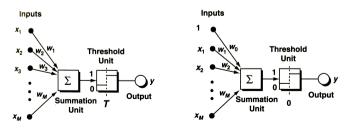
- Financial modeling predicting the stock market
- □ Time series prediction climate, weather, seizures
- Computer games intelligent agents, chess, backgammon
- Robotics autonomous adaptable robots
- Pattern recognition speech recognition, seismic activity, sonar signals
- Data analysis data compression, data mining
- Bioinformatics DNA sequencing, alignment

Introduction 00000●	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00
D					

- Brain vs. Computers
 - Processing elements: There are 10¹⁴ synapses in the brain, compared with 10⁸ transistors in the computer
 - Processing speed: 100 Hz for the brain compared to 10^9 Hz for the computer
 - Style of computation: The brain computes in parallel and distributed mode, whereas the computer mostly serially and centralized.
 - *Fault tolerant:* The brain is fault tolerant, whereas the computer is not.
 - *Adaptive:* The brain learns fast, whereas the computer doesn't even compare with an infant's learning capabilities
 - Intelligence and consciousness: The brain is highly intelligent and conscious, whereas the computer shows lack of intelligence
 - Evolution: The brains have been evolving for tens of millions of years, computers have been evolving for decades.

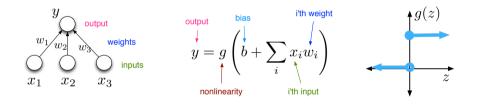
An abstract mathematical model of a neuron

- McCulloch and Pitts given a first attempt to form an abstract mathematical model of a neuron in 1943.
- The binary linear classification model
 - $\hfill\square$ receives a finite number of inputs x_1, x_2, \ldots, x_d
 - \square computes the weighted sum $z = \sum_{i=1}^d w_i x_i$ using the weights w_1, w_2, \dots, w_d
 - \Box thresholds s and output 0 or 1 depending on whether the weighted sum is less than or greater than a given threshold value T.



Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00

McCulloch and Pitts Model



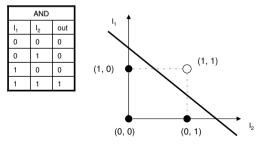
McCulloch and Pitts Model 00000

References

Decision Boundaries for AND and OR

We can now plot the decision boundaries of our logic gates

AND w1=1, w2=1, θ =1.5

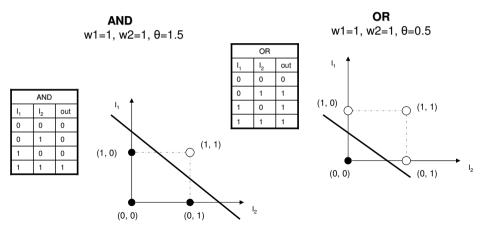


McCulloch and Pitts Model 00000

References

Decision Boundaries for AND and OR

We can now plot the decision boundaries of our logic gates



Limitations Of McCulloch-Pitts Neuron

- What about non-boolean (say, real) inputs?
- Do we always need to hand code the threshold?
- Are all inputs equally important? What if we want to assign more importance to some inputs?
- What about functions which are not linearly separable? Say XOR function.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model ●000000	Choosing a cost function	Mutlilayer Perceptrons	References 00

Perceptron Model

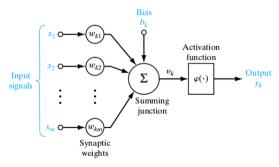
Introduction 000000	McCulloch and Pitts Model	Perceptron Model 0●00000	Choosing a cost function	Mutlilayer Perceptrons	References 00
Percen	tron Model				

- Overcoming the limitations of the McCulloch-Pitts model, Frank Rosenblatt proposed the classical perceptron model in 1958.
- Upgraded by Minsky-Papert in 1969.
 - □ More generalize computational model than McCulloch-Pitts model.
 - □ Can learn weights and threshold.
- Difference between McCullock Pitts Neuron and Perceptron:
 - □ In perceptron, weights and bias are allowed to learn (already we did in linear classifiers).
 - $\hfill\square$ Not limited to only boolean inputs.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model 00●0000	Choosing a cost function	Mutlilayer Perceptrons	References 00

Basic Neural Model of Perceptron

- Input to neurons:
 - \Box Input x_i arise from other neurons or from outside the network
 - Nodes whose inputs arise outside the network are called input nodes and simply copy values
 - □ An input may **excite** or **inhibit** the response of the neuron to which it is applied, depending upon the weight of the connection.
- Synaptic efficacy is modeled using real weight w_i
- The response of the neuron is a nonlinear function f of its weighted inputs



Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00

Single Layer Perceptron

- The perceptron is an algorithm for supervised learning of binary classifiers.
- The perceptron algorithm is also termed the single-layer perceptron, to distinguish it from a multilayer perceptron.
- The single-layer perceptron is the simplest feedforward neural network.
- Perceptron algorithm
 - $\hfill \Box$ Input: A set of examples, $(\mathrm{x}_1,y_1),(\mathrm{x}_2,y_2),\ldots,(\mathrm{x}_n,y_n)$
 - \square Output: A perceptron model defined by (w_0, w_1, \ldots, w_d)

 $1 \underbrace{\operatorname{begin}}_{2} \underbrace{\operatorname{initialize}}_{\mathbf{a} \leftarrow k} \mathbf{a}, \eta(\cdot), \operatorname{criterion} \theta, k = 0$ $2 \underbrace{\operatorname{do}}_{k} k \leftarrow k + 1$ $3 \operatorname{a} \leftarrow \mathbf{a} + \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_{k}} \mathbf{y}$ $4 \underbrace{\operatorname{until}}_{5} \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_{k}} \mathbf{y} < \theta$ $5 \underbrace{\operatorname{return}}_{6} \mathbf{a}$ $6 \operatorname{end}$

Introduction 000000	McCulloch and Pitts Model	Perceptron Model 0000●00	Choosing a cost function	Mutlilayer Perceptrons	References 00

Single Layer Perceptron

- Other form of Perceptron Learning Rule
 - $\Box \ \ {\rm If} \ t=1 \ {\rm and} \ \ z={\rm w}^T{\rm x}>0$
 - then y = 1, so no need to change anything.
 - $\ \ \square \ \ {\rm If} \ t=1 \ {\rm and} \ z<0$
 - then y = 0, so we want to make z larger.
 - Update:

$$w \leftarrow w' + x$$

Justification

$$\mathbf{w}^{T}\mathbf{x} = (\mathbf{w} + \mathbf{x})^{T}\mathbf{x}$$
$$= \mathbf{w}^{T}\mathbf{x} + \mathbf{x}^{T}\mathbf{x}$$
$$= \mathbf{w}^{T}\mathbf{x} + ||\mathbf{x}||$$

Introduction 000000	McCulloch and Pitts Model	Perceptron Model 00000●0	Choosing a cost function	Mutlilayer Perceptrons	References 00
Percep	tron Learning Ru	le			

• For convenience, let targets be $\{-1,1\}$ instead of our usual $\{0,1\}$.

$$z = \mathbf{w}^T \mathbf{x}$$
$$y = \begin{cases} 1 & \text{if } z \ge 0\\ -1 & \text{if } z < 0 \end{cases}$$

Perceptron Learning Rule:

For each training case $(\mathbf{x}^{(i)}, t^{(i)})$, $z^{(i)} \leftarrow \mathbf{w}^T \mathbf{x}^{(i)}$ If $z^{(i)} t^{(i)} \leq 0$, $\mathbf{w} \leftarrow \mathbf{w} + t^{(i)} \mathbf{x}^{(i)}$

Perceptron Learning Rule

- How can we define a sensible learning criterion when the dataset isn't linearly separable?
- Why classification error and squared error are problematic cost functions for classification?
- Recall from linear classifier, can we apply gradient descent to update the weights?
- If yes then which cost/criteria function will be appropriate?
- Gradient Descent Algorithm to update the weights and bias:

Algorithm 1 (Basic gradient descent)

 $\begin{array}{l} 1 & \underline{\mathbf{begin \ initialize}} \\ 2 & \underline{\mathbf{do}} \ k \leftarrow k+1 \\ 3 & \mathbf{a} \leftarrow \mathbf{a} - \eta(k) \nabla J(\mathbf{a}) \\ 4 & \underline{\mathbf{until}} \ \eta(k) \nabla J(\mathbf{a}) < \theta \\ 5 & \underline{\mathbf{return}} \ \mathbf{a} \\ 6 & \mathbf{end} \end{array}$

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function ●0000000000000	Mutlilayer Perceptrons	References 00
0 - 1	Loss criteria func	tion			

$$\mathcal{L}_{0-1}(y,t) = \begin{cases} 0 & \text{if } y = t \\ 1 & \text{otherwise.} \end{cases}$$

- This is the same criteria function that we used earlier.
- Problem: how to optimize?
- Chain rule:

$$\frac{\partial \mathcal{L}_{0-1}}{\partial w_j} = \frac{\partial \mathcal{L}_{0-1}}{\partial z} \frac{\partial z}{\partial w_j}$$

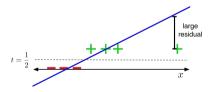
- But ^{∂L₀₋₁}/_{∂z} is zero everywhere it's defined!
 □ ^{∂L₀₋₁}/_{∂w_j} means that changing the weights by a very small amount probably has no effect on the loss.
 - $\hfill\square$ The gradient descent update is a no-op.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00

Squared Error Loss Function

$$y = \mathbf{w}^{\top}\mathbf{x} + b$$
$$\mathcal{L}_{SE}(y,t) = \frac{1}{2}(y-t)^2$$

- Doesn't matter that the targets are actually binary.
- Threshold predictions at y = 1/2



- The loss function hates when you make correct predictions with high confidence!
- If t = 1, it's more unhappy about y = 10 than y = 0.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00

Logistic nonlinearity

- There's obviously no reason to predict values outside [0, 1]. Let's squash y into this interval.
- The logistic function is a kind of sigmoidal, or S-shaped, function:

$$z = \mathbf{w}^{\top}\mathbf{x} + b$$

$$y = \sigma(z)$$

$$\mathcal{L}_{SE}(y, t) = \frac{1}{2}(y - t)^{2}.$$

$$z = \mathbf{w}^{\top}\mathbf{x} + b$$

$$y = \sigma(z)$$

$$\mathcal{L}_{SE}(y, t) = \frac{1}{2}(y - t)^{2}.$$

A linear model with a logistic nonlinearity is known as log-linear:

1

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00

Logistic nonlinearity: chain rule

• Chain Rule: derivative with respect to the weights

$$\frac{\mathrm{d}\mathcal{L}_{\mathrm{SE}}}{\mathrm{d}z} = \frac{\mathrm{d}\mathcal{L}_{\mathrm{SE}}}{\mathrm{d}y}\frac{\mathrm{d}y}{\mathrm{d}z}$$
$$= (y-t)y(1-y)$$
$$\frac{\partial\mathcal{L}_{\mathrm{SE}}}{\partial w_j} = \frac{\mathrm{d}\mathcal{L}_{\mathrm{SE}}}{\mathrm{d}z}\frac{\partial z}{\partial w_j}$$
$$= \frac{\mathrm{d}\mathcal{L}_{\mathrm{SE}}}{\mathrm{d}z} \cdot x_j.$$

derivative with respect to the bias:

$$\frac{d\mathcal{L}_{SE}}{dz} = \frac{d\mathcal{L}_{SE}}{dy} \frac{dy}{dz}$$
$$= (y - t)y(1 - y)$$
$$\frac{\partial\mathcal{L}_{SE}}{\partial z} = \frac{d\mathcal{L}_{SE}}{\partial z} \frac{\partial z}{\partial z}$$
Kundan Kumar

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00
Cross-E	Entropy Loss				

• Cross-entropy (CE) is defined as follows:

1

$$\mathcal{L}_{CE}(y,t) = \begin{cases} -\log y & \text{if } t = 1\\ -\log 1 - y & \text{if } t = 0 \end{cases}$$
$$\mathcal{L}_{CE}(y,t) = -t\log y - (1-t)\log 1 - y.$$

When we combine the logistic activation function with cross-entropy loss, you get logistic regression:

$$z = \mathbf{w}^{\top} \mathbf{x} + b$$

$$y = \sigma(z)$$

$$\mathcal{L}_{CE} = -t \log y - (1 - t) \log 1 - y.$$

Cross-Entropy Loss: Chain rule

• Chain rule:

$$z = \mathbf{w}^{\top} \mathbf{x} + b$$

$$y = \sigma(z)$$

$$\mathcal{L}_{CE} = -t \log y - (1 - t) \log 1 - y.$$

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00
Γ					

Example on perceptron

Question Compute the updated weights and bias using perceptron algorithm to model the AND gate. Consider the initial weight and bias as 0 and learning rate as 0.5.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00

Perceptron Model: Multiclass Problem

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00
Multic	lass classification				

- What about classification tasks with more than two categories?
- Targets form a discrete set $\{1, \ldots, K\}$
- It's often more convenient to represent them as one-hot vectors, or a one-of-K encoding:

$$\mathbf{t} = \underbrace{(0, \dots, 0, 1, 0, \dots, 0)}_{\text{entry } k \text{ is } 1}$$

- Now there are d input dimensions and K output dimensions, so we need K × d weights, which we arrange as a weight matrix W.
- Also, we have a K-dimensional vector b of biases.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00
NA 1.11	1				

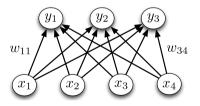
Multiclass classification

• Linear predictions:

$$z_k = \sum_j w_{kj} x_j + b_k$$

Vectorized:

 $\mathbf{z} = W\mathbf{x} + \mathbf{b}$



Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00
Multicl	ass classification				

 A natural activation function to use is the softmax function, a multivariable generalization of the logistic function:

$$y_k = \operatorname{softmax}(z_1, \dots, z_K)_k = \frac{e^{z_k}}{\sum_{k'} e^{z_{k'}}}$$

- The inputs z_k are called the logits.
- Properties:
 - □ Outputs are positive and sum to 1 (so they can be interpreted as probabilities)
 - □ If one of the z_k 's is much larger than the others, softmax(z) is approximately the argmax. (So really it's more like "soft-argmax".)
 - $\hfill\square$ Exercise: how does the case of K=2 relate to the logistic function?
- Note: sometimes $\sigma(z)$ is used to denote the softmax function.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons 0000000	References 00
Multic	lass classification				

If a model outputs a vector of class probabilities, we can use cross-entropy as the loss function:

$$egin{aligned} \mathcal{L}_{ ext{CE}}(\mathbf{y},\mathbf{t}) &= -\sum_{k=1}^{K} t_k \log y_k \ &= -\mathbf{t}^{ op}(\log \mathbf{y}). \end{aligned}$$

where the log is applied element wise.

 Just like with logistic regression, we typically combine the softmax and cross-entropy into a softmax-cross-entropy function.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00
Multicla	ss classification				

Multiclass logistic regression:

$$\begin{aligned} \mathbf{z} &= \mathbf{W}\mathbf{x} + \mathbf{b} \\ \mathbf{y} &= \operatorname{softmax}(\mathbf{z}) \\ \mathcal{L}_{\operatorname{CE}} &= -\mathbf{t}^{\top}(\log \mathbf{y}) \end{aligned}$$

• Tutorial: deriving the gradient descent updates

$$rac{\partial \mathcal{L}_{ ext{SCE}}}{\partial \mathbf{z}} = \mathbf{y} - \mathbf{t}$$

Softmax regression is an elegant learning algorithm which can work very well in practice.

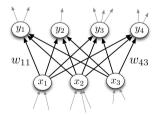
Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function ○○○○○○○○○○○○○	Mutlilayer Perceptrons	References 00
Input to	Neurons				

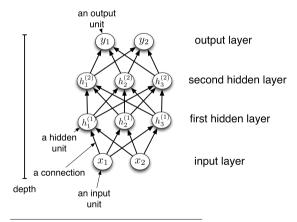
- Arise from other neurons or from outside the network
- Nodes whose inputs arise outside the network are called input nodes and simply copy values
- An input may excite or inhibit the response of the neuron to which it is applied, depending upon the weight of the connection.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons ●000000	References 00

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons 0●00000	References 00

- Feed-forward neural network is a fully connected directed acyclic graph.
- In contrast to recurrent neural networks, which can have cycles (out of the scope of this course).
- Typically, units are grouped together into layers.

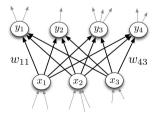


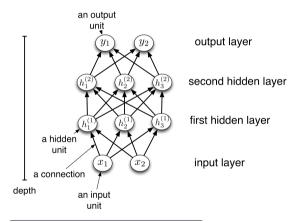


Courtesy: Roger Grosse, Lecture Notes

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00
	2				

- Each layer connects N input units to M output units. Note: the inputs and outputs for a layer are distinct from the inputs and outputs to the network.
- We need an $M \times N$ weight matrix, W.
- The output units are a function of the input units: y = f(x) = (Wx + b)

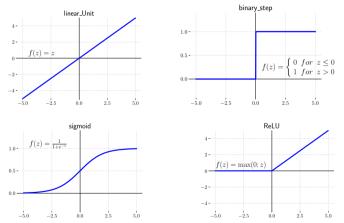




Courtesy: Roger Grosse, Lecture Notes

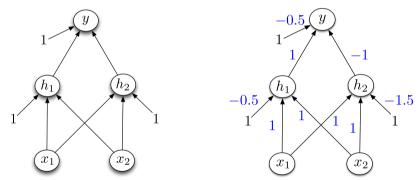
Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00

Some activation functions



Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References 00
Fxamp	le: Exclusive OR				

Designing a network to compute XOR: Assume hard threshold activation function



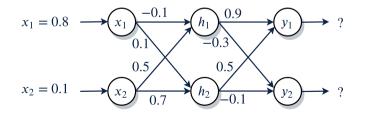
Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons 00000●0	References 00
_					

Forward-Propagation

Propagate the input through the network:

- □ Assume sigmoid activation function,
- $\hfill\square$ Bias is dropped for simplification

$$y_i = f\left(\sum_j w_{ji}^{(2)} f\left(\sum_k w_{kj}^{(1)} x_k\right)\right) \qquad \text{for } i$$



 Introduction
 McCulloch and Pitts Model
 Perceptron Model
 Choosing a cost function
 Mutiliayer Perceptrons
 References

 000000
 0000000
 0000000
 0000000
 00
 00

Backpropagation Learning Algorithm

will update soon

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References ●0
Referen	ces				

- [1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.
- [2] Gose, E. (1997). Pattern recognition and image analysis.

Introduction 000000	McCulloch and Pitts Model	Perceptron Model	Choosing a cost function	Mutlilayer Perceptrons	References ○●
		1			
			//		
			/		
		0			
		\bigcirc			

Thank you!