Introd	
000	

Linear Machine

Kernel Trick 0000000000

Soft Margin Classificati

References 00

Pattern Classification EET3053 Lecture 07: Support Vector Machine

Dr. Kundan Kumar Associate Professor Department of ECE

Faculty of Engineering (ITER) S'O'A Deemed to be University, Bhubaneswar, India-751030 © 2021 Kundan Kumar, All Rights Reserved

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000				

Linear Machine: Support Vector Machine

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	000000000		00

Introduction

- Support vector machines (SVMs) are a linear machines initially developed for two class problems, which construct a hyperplane or set of hyperplanes in a high- or infinite-dimensional space.
- SVMs are a set of supervised learning methods used for
 - classification,
 - regression and
 - outliers detection.
- The advantages of support vector machines are:
 - Effective in high dimensional spaces.
 - Also, effective in cases where number of dimensions is greater than the number of samples.
 - □ Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.
 - □ Versatile: different SVM kernels can be specified for the decision function. Common kernels are provided, but it is also possible to specify custom kernels.

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
00●	0000000000000	000000000		00

Introduction

- The disadvantages of support vector machines include:
 - □ If the number of features is much greater than the number of samples then choosing regularization to avoiding over-fitting is crucial.
 - SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation.
- In addition to performing linear classification, SVMs can efficiently perform a non-linear classification using what is called Kernel trick.
- Kernel trick implicitly maps their input into high-dimensional feature space.

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	●00000000000000	000000000		00
l inear de	cision boundary			

Binary classification can be viewed as the task of separating classes in feature space using decision boundary:

Kundan Kumar

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	000000000		00

What is a good Decision Boundary?

- Consider a two-class, linearly separable classification problem, many decision boundaries are possible.
- Are all decision boundaries equally good?
- Which of the linear separators is optimal?
- The perceptron algorithm can be used to find such a boundary.

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	oo●ooooooooooo	000000000		00
Linear SVM:	Objective			

• Let us training data set, \mathcal{D} , a set of n points.

$$\mathcal{D} = \{ (\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \Re^d, y_i \in \{-1, 1\} \}_{i=1}^n$$

 $\mathbf{x}_i \
ightarrow d$ -dimensional real vector

Objective: find maximum-margin hyperplane

 $\mathbf{w}^T \mathbf{x} + b = 0$

where w is the normal vector to the hyperplane and b is the bias/intercept.

000	0000000000000	000000000	00
Linear SVM	nictorial representa	ition	

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	000000000		00

Preliminary concepts

- Let x_n be the nearest data point to the plane $w^T x + b = 0$.
- How far is it?
- Normalize w and b such that:

$$|\mathbf{w}^T \mathbf{x}_n + b| = 1$$

- Now, we need to compute the distance between x_n and the plane w^Tx + b = 0, where |w^Tx_n + b| = 1.
- The vector w is ⊥ to the plane in the *X* space:
- \blacksquare Take x_1 and x_2 on the plane

 $\mathbf{w}^T\mathbf{x}_1 + b = 0 \text{ and } \mathbf{w}^T\mathbf{x}_2 + b = 0$

$$\Rightarrow \ \mathbf{w}^T(\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{0}$$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000●00000000	000000000		00
Preliminary	concents			

The distance between x_n and the plane:

- Take any point x on the plane
- Projection of $x_n x$ on \hat{w}

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	000000000		00
Problem f	ormulation			

• So the distance between the hyperplane is

$$\frac{b+1}{||\mathbf{w}||} - \frac{b-1}{||\mathbf{w}||} = \frac{2}{||\mathbf{w}||}$$

(need to be maximize)

 Therefore, ||w|| need to be minimize.

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000●0000000	000000000		00
Droblom	formulation			

- - We need to minimize ||w|| to maximize the margin.
 - We also have to restrict data points from falling into the margin, so add the following constraints:
 - $\square w_{-}^T x_i + b \ge 1$ for x_i of the 1st class.
 - $\square \mathbf{w}^T \mathbf{x}_i + b \leq -1$ for x_i of the 2nd class.
 - This can be written as

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$$
 for $i = 1, 2, ..., n$

Combining the above two

 $\underset{\mathbf{w},b}{\mathsf{Minimize}} \quad ||\mathbf{w}||$

subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$ for $i = 1, 2, \dots, n$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000●000000	000000000		00
Problem	formulation			

- Problem is difficult to solve because it depends on ||w||, the norm of w, which involves a square root.
- Substitute ||w|| with $\frac{1}{2}||w||^2$ (just for mathematical convenience)
- Then problem is formulated as

$$\begin{array}{ll} \underset{\mathbf{w},b}{\text{Minimize}} & \frac{1}{2} ||\mathbf{w}||^2 \\ \text{subject to} & y_i(\mathbf{w}^T \mathbf{x}_i + b) \geq 1 \quad \text{ for } \quad i = 1,2,\ldots,n \end{array}$$

where $\mathbf{w} \in \Re^d$ and $b \in \Re$

- The above problem is constraint optimization problem.
- Read about Lagrangian and inequality constraint KKT

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	000000000	00000	00

Problem solution: Lagrange formulation

- There is no direct solution of the formulated constraint optimization problem.
- To obtain the dual, take positive Lagrange multiplier α_i multiplied by each constraint and subtract from the objective function.

Minimize
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum_{i=1}^n \alpha_i(y_i(\mathbf{w}^T\mathbf{x}_i + b) - 1)$$

w.r.t. w and b and maximize w.r.t. each $\alpha_i \geq 0$

• We can find the constraint as

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0$$
$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^{n} \alpha_i y_i = 0$$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000●0000	000000000		00
Problem solu	tion: Lagrange for	mulation		

We obtained

Substitute in Lagrangian optimization problem,

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1)$$

we get

$$\mathcal{L}(\alpha) = \sum_{n=1}^{n} \alpha_n - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j$$

Maximize w.r.t. to α subject to $\alpha_i \ge 0$ for $i = 1, \ldots, n$ and $\sum_{i=1}^n \alpha_i y_i = 0$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	000000000000000	000000000		00

The solution - quadratic programming

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{T} \begin{bmatrix} y_{1}y_{1}x_{1}^{T}x_{1} & y_{1}y_{2}x_{1}^{T}x_{2} & \cdots & y_{1}y_{n}x_{1}^{T}x_{n} \\ y_{2}y_{1}x_{2}^{T}x_{1} & y_{2}y_{2}x_{2}^{T}x_{2} & \cdots & y_{2}y_{n}x_{2}^{T}x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n}y_{1}x_{n}^{T}x_{1} & y_{n}y_{2}x_{n}^{T}x_{2} & \cdots & y_{n}y_{n}x_{n}^{T}x_{n} \end{bmatrix} \alpha + (-1^{T}) \alpha$$

subject to $y^T \alpha = 0$ and $0 \leqslant \alpha \leqslant \infty$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000000	000000000		00
QP hand us	α			

• Solution: $\alpha = \alpha_1, \ldots, \alpha_n$

$$\Rightarrow \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

• KKT condition: For $i = 1, \ldots, n$

$$\alpha_i(y_i(\mathbf{w}^T\mathbf{x}_i+b)-1) = 0$$

 For non-zero value of α (α_n > 0), x_n are support vectors.

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000000	000000000		00
<u> </u>				

Support vectors

Closest x_i's to the plane achieve the margin

$$\Rightarrow y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$$

• We have the weight vector

$$\mathbf{w} = \sum_{x_i \text{ is SV}} \alpha_i y_i \mathbf{x}_i$$

Solve for b: using any Support vector (SV):

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	000000000000000	000000000		00
	wahla faatuwaa			

Non-separable features

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	●000000000		00

Kernel Trick

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	0●00000000		00
Kernel trick:	z instead of x			

Dual problem:

$$\mathcal{L}(\alpha) = \sum_{n=1}^{n} \alpha_n - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{z}_i^T \mathbf{z}_j$$

Maximize w.r.t. to α subject to $\alpha_i \ge 0$ for $i = 1, \ldots, n$ and $\sum_{i=1}^n \alpha_i y_i = 0$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	00●0000000		00
			_	

Kernel Trick: What do we need from the \mathcal{Z} space?

$$\mathcal{L}(\alpha) = \sum_{n=1}^{n} \alpha_n - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{z}_i^T \mathbf{z}_j$$

Constraints: $\alpha \geq 0$ for $i=1,\ldots,n$ and $\sum_{i=1}^n \alpha_i y_i = 0$

$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{z} + b)$$
 need $\mathbf{z}_i^T \mathbf{z}$

where

$$\mathrm{w} = \sum_{\mathrm{z}_i \text{ is SV}} lpha_i y_i z_i$$

and b:

$$y_j(\mathbf{w}^T \mathbf{z}_j + b) = 1$$
 need $\mathbf{z}_i^T \mathbf{z}_j$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	000●000000		00
Kernel Trick:	generalized inner	product		

- Given two points x and $x' \in \mathcal{X}$, we need $z^T z'$.
- Let $z^T z' = K(x, x')$ (the kernel: inner product of x and x')
- Example: $\mathbf{x} = (x_1, x_2)^T \rightarrow 2$ nd-order Φ

$$z = \Phi(x) = (1, x_1, x_2, x_1^2, x_2^2, x_1x_2)$$

 $K(\mathbf{x},\mathbf{x}') = \mathbf{z}^T \mathbf{z}' = 1 + x_1 x_1' + x_2 x_2' + x_1^2 x_1'^2 + x_2^2 x_2'^2 + x_1 x_1' x_2 x_2'$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	0000●00000		00
Kernel Trick				

- $\hfill\blacksquare$ Can we compute $K({\bf x},{\bf x}')$ without transforming ${\bf x}$ and ${\bf x}'?$
- Consider:

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^2 = (1 + x_1 x'_1 + x_2 x'_2)^2$$

= $1 + x_1^2 x'_1^2 + x_2^2 x'_2^2 + 2x_1 x'_1 + 2x_2 x'_2 + 2x_1 x'_1 x_2 x'_2$

This is the inner production of

$$(1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$
$$(1, x'_1{}^2, x'_2{}^2, \sqrt{2}x'_1, \sqrt{2}x'_2, \sqrt{2}x'_1x'_2)$$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	00000●0000		00
Non-linear	Kernels			

Following are some basic non-linear kernels:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

□ Polynomial:

$$K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma \mathbf{x}_i^T \mathbf{x}_j + r)^d, \gamma > 0$$

□ Radial basis function:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2\right), \gamma > 0$$

□ Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh\left(\gamma \mathbf{x}_i^T \mathbf{x}_j + r\right), \gamma > 0$$

where, $\gamma,$ r, and d are kernel parameters.

These kernels were used in various application where radial basis function (RBF) kernel is widely adopted as a non-linear kernel due to its capability of mapping the feature vectors from input feature space to infinite dimensional space to handle highly non-linear feature distribution.

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	000000●000		00
Kernel for	mulation of SVM			

- Remember quadratic programming?
- The only difference in quadratic coefficients as:

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{T} \begin{bmatrix} y_{1}y_{1}z_{1}^{T}z_{1} & y_{1}y_{2}z_{1}^{T}z_{2} & \cdots & y_{1}y_{n}z_{1}^{T}z_{n} \\ y_{2}y_{1}z_{2}^{T}z_{1} & y_{2}y_{2}z_{2}^{T}z_{2} & \cdots & y_{2}y_{n}z_{2}^{T}z_{n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n}y_{1}z_{n}^{T}z_{1} & y_{n}y_{2}z_{n}^{T}z_{2} & \cdots & y_{n}y_{n}z_{n}^{T}z_{n} \end{bmatrix} \alpha + (-1^{T}) \alpha$$

subject to $y^T \alpha = 0$ and $0 \leqslant \alpha \leqslant \infty$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	0000000●00		00
The final hy	pothesis			

• Express $g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{z} + b)$ in terms of $K(_,_)$

$$\mathbf{w} = \sum_{z_n \text{ in SV}} \alpha_n y_n \mathbf{z}_n \quad \Rightarrow \quad g(\mathbf{x}) = \operatorname{sign}\left(\sum_{\alpha_n > 0} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

where

$$b = y_j - \sum_{\alpha_i > 0} \alpha_i y_i K(x_i, x_j)$$

for any support vector ($\alpha_i > 0$)

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	0000000●0		00
Problem t	o he solved. Linea	r (trivial proble	m)	

Suppose we are given the following positively labeled data points in R²:

$$\left\{ \left(\begin{array}{c} 3\\1\end{array}\right), \left(\begin{array}{c} 3\\-1\end{array}\right), \left(\begin{array}{c} 6\\1\end{array}\right), \left(\begin{array}{c} 6\\-1\end{array}\right) \right\}$$

- and the following negatively labeled data points in \Re^2

 $\left\{ \left(\begin{array}{c} 1\\0\end{array}\right), \left(\begin{array}{c} 0\\1\end{array}\right), \left(\begin{array}{c} 0\\-1\end{array}\right), \left(\begin{array}{c} -1\\0\end{array}\right) \right\}$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	00000000●		00
<u> </u>				

Solution

- Since the data is linear separable, we can use a linear SVM.
- By inspection, it should be obvious that there are three support vectors.

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	000000000	•0000	00

SVM: Soft Margin Formulation

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	000000000		00
Soft Margir	Classification			

- In basic SVM, the optimization problem is formulated for margin maximization when the feature vectors are linearly separable.
- However, a greater margin can be achieved by allowing classifier for some misclassification error during training itself.
- After allowing the misclassification of some features, the inequality constraint in basic SVM is replaced with y_i(w^Tx_i + b) ≥ 1 − ξ_i, where ξ_i ≥ 0 are slack variables.

Figure: $\mathcal{X}\text{-space}$ with support vector, penalized misclassification, and margin error

The new optimization problem: C-SVM

- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.
- Slack variables account for the misclassification and margin errors.
- The primal optimization problem with penalized misclassification and margin error becomes.

$$\begin{array}{ll} \underset{\mathbf{w},b}{\text{minimize}} & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \\ \text{subject to:} & y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1 - \xi_i, \text{ and} \\ & \xi_i \ge 0, \ i = 1, 2, \dots, n, \end{array} \tag{1}$$

 where C is a regularization parameter which sets the trade-off between margin maximization and minimizing the amount of slack (misclassifications and margin error).

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	0000000000000	000000000		00

Lagrange formulation

Using Lagrange multipliers, the dual problem is expressed in terms of Lagrangian coefficients as

$$\mathcal{L}(\mathbf{w}, b, \xi, \alpha, \beta) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

Minimize w.r.t. w, b, and ξ and maximize w.r.t. each $\alpha_n \ge 0$ and $\beta_n \ge 0$

$$\nabla_{\mathbf{w}}L = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0$$
$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \beta_i = 0$$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	000000000	0000●	00
and the so	olution is			

Maximize
$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j$$
 w.r.t. to α

subject to
$$0 \leq \alpha_i \leq C$$
 for $n = 1, ..., N$ and $\sum_{i=1}^n \alpha_i y_i = 0$

$$\Rightarrow \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{n} \xi_i$$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
000	00000000000000	000000000		●0
References				

- [1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.
- [2] Gose, E. (1997). Pattern recognition and image analysis.

Introduction 000	Linear Machine 00000000000000	Kernel Trick 000000000	Soft Margin Classification	References ○●
		2		
	Th	ank y	ou!	