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Linear Machine: Support Vector Machine
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Introduction

� Support vector machines (SVMs) are a linear machines initially developed for two
class problems, which construct a hyperplane or set of hyperplanes in a high- or
infinite-dimensional space.

� SVMs are a set of supervised learning methods used for
� classification,
� regression and
� outliers detection.

� The advantages of support vector machines are:
� Effective in high dimensional spaces.
� Also, effective in cases where number of dimensions is greater than the number of

samples.
� Uses a subset of training points in the decision function (called support vectors), so it is

also memory efficient.
� Versatile: different SVM kernels can be specified for the decision function. Common

kernels are provided, but it is also possible to specify custom kernels.
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Introduction

� The disadvantages of support vector machines include:
� If the number of features is much greater than the number of samples then choosing

regularization to avoiding over-fitting is crucial.
� SVMs do not directly provide probability estimates, these are calculated using an

expensive five-fold cross-validation.

� In addition to performing linear classification, SVMs can efficiently perform a
non-linear classification using what is called Kernel trick.

� Kernel trick implicitly maps their input into high-dimensional feature space.
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Linear decision boundary

� Binary classification can be viewed as the task of separating classes in feature space
using decision boundary:

−6 −4 −2 0 2

−2

0

2

4

6
wTx + b = 0

wTx + b < 0

wTx + b > 0

Class 1

Class 2

f(x) = sign(wTx + b)

4/35 Kundan Kumar Pattern Classification



Introduction Linear Machine Kernel Trick Soft Margin Classification References

What is a good Decision Boundary?

� Consider a two-class, linearly separable classification problem, many decision
boundaries are possible.

� Are all decision boundaries equally good?
� Which of the linear separators is optimal?
� The perceptron algorithm can be used to find such a boundary.
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Linear SVM: Objective

� Let us training data set, D, a set of n points.

D = {(xi, yi) | xi ∈ <d, yi ∈ {−1, 1}}ni=1

xi → d-dimensional real vector
� Objective: find maximum-margin hyperplane

wTx + b = 0

where w is the normal vector to the hyperplane and b is the bias/intercept.
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Linear SVM: pictorial representation
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Preliminary concepts

� Let xn be the nearest data point to the plane wTx + b = 0.
� How far is it?
� Normalize w and b such that:

|wTxn + b| = 1

� Now, we need to compute the
distance between xn and the
plane wTx + b = 0, where
|wTxn + b| = 1.

� The vector w is ⊥ to the plane in
the X space:

� Take x1 and x2 on the plane

wTx1 + b = 0 and wTx2 + b = 0

w

x
′

x
″
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𝑛

ŵ 
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⇒ wT (x1 − x2) = 0
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Preliminary concepts

The distance between xn and the plane:

� Take any point x on the plane

� Projection of xn − x on ŵ

ŵ =
w

||w||

⇒ distance = |ŵT (xn − x)|
distance =

1

||w|| |w
Txn − wTx| = 1

||w|| |w
Txn + b− wTx− b| = 1

||w||

9/35 Kundan Kumar Pattern Classification



Introduction Linear Machine Kernel Trick Soft Margin Classification References

Problem formulation
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� Therefore, ||w|| need to be
minimize.
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Problem formulation

� We need to minimize ||w|| to maximize the margin.
� We also have to restrict data points from falling into the margin, so add the

following constraints:
� wT xi + b ≥ 1 for xi of the 1st class.
� wT xi + b ≤ −1 for xi of the 2nd class.

� This can be written as

yi(w
Txi + b) ≥ 1 for i = 1, 2, . . . , n

� Combining the above two

Minimize
w,b

||w||

subject to yi(w
Txi + b) ≥ 1 for i = 1, 2, . . . , n

−6 −4 −2 0 2

−2

0

2

4

6 w T
x

+
b

=
0

w T
x

+
b

=
1

Class 1

Class 2

Support
Vectors

M
ar

gin

w T
x

+
b

=
−

1

11/35 Kundan Kumar Pattern Classification



Introduction Linear Machine Kernel Trick Soft Margin Classification References

Problem formulation

� Problem is difficult to solve because it depends on ||w||, the norm of w, which
involves a square root.

� Substitute ||w|| with 1
2 ||w||2 (just for mathematical convenience)

� Then problem is formulated as

Minimize
w,b

1

2
||w||2

subject to yi(w
Txi + b) ≥ 1 for i = 1, 2, . . . , n

where w ∈ <d and b ∈ <
� The above problem is constraint optimization problem.

� Read about Lagrangian and inequality constraint KKT
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Problem solution: Lagrange formulation

� There is no direct solution of the formulated constraint optimization problem.
� To obtain the dual, take positive Lagrange multiplier αi multiplied by each

constraint and subtract from the objective function.

Minimize L(w, b, α) =
1

2
wTw −

n∑
i=1

αi(yi(w
Txi + b)− 1)

w.r.t. w and b and maximize w.r.t. each αi ≥ 0
� We can find the constraint as

∇wL = w −
n∑
i=1

αiyixi = 0

∂L
∂b

= −
n∑
i=1

αiyi = 0
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Problem solution: Lagrange formulation

� We obtained

w =

n∑
i=1

αiyixi and
n∑
i=1

αiyi = 0

� Substitute in Lagrangian optimization problem,

L(w, b, α) =
1

2
wTw −

n∑
i=1

αi(yi(w
Txi + b)− 1)

we get

L(α) =

n∑
n=1

αn −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj

Maximize w.r.t. to α subject to αi ≥ 0 for i = 1, . . . , n and
∑n

i=1 αiyi = 0
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The solution - quadratic programming

min
α

1

2
αT


y1y1x

T
1 x1 y1y2x

T
1 x2 · · · y1ynx

T
1 xn

y2y1x
T
2 x1 y2y2x

T
2 x2 · · · y2ynx

T
2 xn

...
...

. . .
...

yny1x
T
nx1 yny2x

T
nx2 · · · ynynx

T
nxn

α+
(
−1T

)
α

subject to yTα = 0 and 0 6 α 6∞
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QP hand us α

� Solution: α = α1, . . . , αn

⇒ w =

n∑
i=1

αiyixi

� KKT condition: For i = 1, . . . , n

αi(yi(w
Txi + b)− 1) = 0

� For non-zero value of α (αn > 0), xn
are support vectors.
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Support vectors

� Closest xi’s to the plane achieve the
margin

⇒ yi(w
Txi + b) = 1

� We have the weight vector

w =
∑

xi is SV

αiyixi

� Solve for b: using any Support vector
(SV):

yi(w
Txi + b) = 1
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Non-separable features

 

 → 

 

 → 
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Kernel Trick
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Kernel trick: z instead of x

� Dual problem:

L(α) =

n∑
n=1

αn −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjz
T
i zj

Maximize w.r.t. to α subject to αi ≥ 0 for i = 1, . . . , n and
∑n

i=1 αiyi = 0

 

 → 
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Kernel Trick: What do we need from the Z space?

L(α) =

n∑
n=1

αn −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjz
T
i zj

Constraints: α ≥ 0 for i = 1, . . . , n and
∑n

i=1 αiyi = 0

g(x) = sign(wT z + b) need zTi z

where
w =

∑
zi is SV

αiyizi

and b:
yj(w

T zj + b) = 1 need zTi zj
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Kernel Trick: generalized inner product

� Given two points x and x′ ∈ X , we need zT z′.

� Let zT z′ = K(x, x′) (the kernel: inner product of x and x′)

� Example: x = (x1, x2)
T → 2nd-order Φ

z = Φ(x) = (1, x1, x2, x
2
1, x

2
2, x1x2)

K(x, x′) = zT z′ = 1 + x1x
′
1 + x2x

′
2 + x21x

′2
1 + x22x

′2
2 + x1x

′
1x2x

′
2
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Kernel Trick

� Can we compute K(x, x′) without transforming x and x′?

� Consider:

K(x, x′) = (1 + xTx′)2 = (1 + x1x
′
1 + x2x

′
2)

2

= 1 + x21x
′
1
2 + x22x

′
2
2 + 2x1x

′
1 + 2x2x

′
2 + 2x1x

′
1x2x

′
2

� This is the inner production of

(1, x21, x
2
2,
√

2x1,
√

2x2,
√

2x1x2)

(1, x′1
2, x′2

2,
√

2x′1,
√

2x′2,
√

2x′1x
′
2)
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Non-linear Kernels
� Following are some basic non-linear kernels:

� Linear:
K(xi, xj) = xT

i xj

� Polynomial:
K(xi, xj) = (γxT

i xj + r)d, γ > 0

� Radial basis function:

K(xi, xj) = exp
(
−γ‖xi − xj‖2

)
, γ > 0

� Sigmoid:
K(xi, xj) = tanh

(
γxT

i xj + r
)
, γ > 0

where, γ, r, and d are kernel parameters.
� These kernels were used in various application where radial basis function (RBF)

kernel is widely adopted as a non-linear kernel due to its capability of mapping the
feature vectors from input feature space to infinite dimensional space to handle
highly non-linear feature distribution.
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Kernel formulation of SVM

� Remember quadratic programming?

� The only difference in quadratic coefficients as:

min
α

1

2
αT


y1y1z

T
1 z1 y1y2z

T
1 z2 · · · y1ynz

T
1 zn

y2y1z
T
2 z1 y2y2z

T
2 z2 · · · y2ynz

T
2 zn

...
...

. . .
...

yny1z
T
n z1 yny2z

T
n z2 · · · ynynz

T
n zn

α+
(
−1T

)
α

subject to yTα = 0 and 0 6 α 6∞
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The final hypothesis

� Express g(x) = sign(wT z + b) in terms of K( , )

w =
∑

zn in SV

αnynzn ⇒ g(x) = sign

(∑
αn>0

αnynK(xn, x) + b

)

where
b = yj −

∑
αi>0

αiyiK(xi, xj)

for any support vector (αi > 0)
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Problem to be solved: Linear (trivial problem)

� Suppose we are given the following
positively labeled data points in <2:{(

3
1

)
,

(
3
−1

)
,

(
6
1

)
,

(
6
−1

)}
� and the following negatively labeled

data points in <2{(
1
0

)
,

(
0
1

)
,

(
0
−1

)
,

(
−1
0

)}
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Solution

� Since the data is linear separable, we
can use a linear SVM.

� By inspection, it should be obvious that
there are three support vectors.
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SVM: Soft Margin Formulation
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Soft Margin Classification

� In basic SVM, the optimization problem
is formulated for margin maximization
when the feature vectors are linearly
separable.

� However, a greater margin can be
achieved by allowing classifier for some
misclassification error during training
itself.

� After allowing the misclassification of
some features, the inequality constraint
in basic SVM is replaced with
yi(w

Txi + b) ≥ 1− ξi, where ξi ≥ 0 are
slack variables.
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The new optimization problem: C-SVM

� Slack variables ξi can be added to allow misclassification of difficult or noisy
examples, resulting margin called soft.

� Slack variables account for the misclassification and margin errors.

� The primal optimization problem with penalized misclassification and margin error
becomes.

minimize
w,b

1
2‖w‖

2 + C
n∑
i=1

ξi

subject to : yi(w
Txi + b) ≥ 1− ξi, and

ξi ≥ 0, i = 1, 2, . . . , n,

(1)

� where C is a regularization parameter which sets the trade-off between margin
maximization and minimizing the amount of slack (misclassifications and margin
error).
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Lagrange formulation

Using Lagrange multipliers, the dual problem is expressed in terms of Lagrangian
coefficients as

L(w, b, ξ, α, β) =
1

2
wTw + C

n∑
i=1

ξi −
n∑
i=1

αi(yi(w
Txi + b)− 1 + ξi)−

n∑
i=1

βiξi

Minimize w.r.t. w, b, and ξ and maximize w.r.t. each αn ≥ 0 and βn ≥ 0

∇wL = w −
n∑
i=1

αiyixi = 0

∂L

∂b
= −

n∑
i=1

αiyi = 0

∂L

∂ξi
= C − αi − βi = 0

32/35 Kundan Kumar Pattern Classification



Introduction Linear Machine Kernel Trick Soft Margin Classification References

and the solution is ...

Maximize L(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyjαiαjx
T
i xj w.r.t. to α

subject to 0 6 αi 6 C for n = 1, . . . , N and
n∑
i=1

αiyi = 0

⇒ w =
n∑
i=1

αiyixi

minimize
1

2
wTw + C

n∑
i=1

ξi
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