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Introduction

® |n parametric estimation, we assumed that the forms for the underlying probability
densities were known, and used the training samples to estimate the values of their
parameters.

® |nstead, assume that the proper forms for the discriminant functions is known, and
use the samples to estimate the values of parameters of the classifier.

® None of the various procedures for determining discriminant functions require
knowledge of the forms of underlying probability distributions so called
nonparametric approach.

® | inear discriminant functions are relatively easy to compute and estimate the form
using training samples.
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Linear discriminant functions and decisions surfaces

® A discriminant function is a linear combination of the components of x can be
written as
9(x) = wx + wp
where w is the weight vector and w the bias or threshold weight.
® The equation g(x) = 0 defines the decision surface that separates points from
different classes.

® Linear discriminant functions are going to be studied for
O two-category case,
0 multi-category case, and
O general case
For the general case there will be ¢ such discriminant functions, one for each of ¢
categories.
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Two-Category Case

= A two-category classifier with a discriminant function of the form g(x) = w’x + wq
uses the following rule:

wp if g(x) >0
wo  otherwise

Decide {

® Thus, x is assigned to w; if the inner product w’ x exceeds the threshold —wjg and
to wy otherwise.

® |f g(x) = 0, x can ordinarily be assigned to either class, or can be left undefined.
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A simple linear classifier

g(x)

X, X, ce X4

Figure: A simple linear classifier having d input units, each corresponding to the values of the components of an
input vector. Each input feature value z; is multiplied by its corresponding weight w;; the output unit sums all
these products and emits +1 if w”'x +wg > 0 or —1 otherwise
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Two-Category Case

® The equation g(x) = 0 defines the decision surface that separates points assigned to
the category wy from points assigned to the category wo

® When g(x) is linear, the decision surface is a hyperplane.

® |f x; and x9 are both on the decision surface, then

T T
W' X1 +wo =W X+ wo WT

= wli(x;—x)=0 %

X1

® This shows that w is normal to any vector lying in the hyperplane.
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Two-Category Case

® The discriminant function g(x) gives an algebraic measure of the distance from x to
the hyperplane. The easiest way to see this is to express x as

W

X=Xp+rT W]

® where x,, is the normal projection of x onto H,
and r is the desired algebraic distance which is
positive if x is on the positive side and negative
if x is on the negative side.

® Because, g(x,) =0

~9(x)

~wl
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Two-Category Case

® The distance from the origin to
H is given by ||quOH'

m |f wy > 0, the origin is on the
positive side of H, and if wg < 0,
it is on the negative side.

m |f wy =0, then g(x) has the
homogeneous form w’x, and the
hyperplane passes through the

origin. Figure: The linear decision boundary H, where
g(x) = wTx + wo, separates the feature space into two
half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0))
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Two-Category Case

® |n conclusion, a linear discriminant function divides the feature space by a
hyperplane decision surface.

® The orientation of the surface is determined by the normal vector w and the
location of the surface is determined by the bias wy.

® The discriminant function g(x) is proportional to the signed distance from x to the
hyperplane, with g(x) > 0 when x is on the positive side, and g(x) < 0 when x is
on the negative side.
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Multi-category case

® There is more than one way to devise multi-category classifiers employing linear
discriminant functions.

O ¢ two-class problem 0 ¢(c—1)/2 linear
(one-vs-rest) discriminants, one for every
pair of classes (one-vs-one).

not g

® Pink regions have ambiguous category assignment.

o
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Multi-category case

® More effective way is to define ¢ linear discriminant functions
I -
gi(x)=w;x+wpp i=12,...,¢c
and assign x to w; if g;(x) > g;(x) for all j # 4; in case of ties, the classification is
undefined

® In this case, resulting classifier is a “linear machine” .

® A linear machine divides the feature space into ¢ decision regions, with g;(x) being
the largest discriminant if x is in the region R;.

® For a two contiguous regions R; and R ;; the boundary that separates them is a
portion of hyperplane H;; defined by:

9i (X) =9g; (X) or (W,‘ — Wj)TX -+ (wio - ’U)jo) =0
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Multi-category case

® |t follows at once that w; — w; is normal to H;;, and the signed distance from x to

H;; is given by
(9i(x) — 9;i(x))

[lwi — wj]|

Ry
R

(O))
Rs . o

Figure: Decision boundaries produced by a linear machine for a three-class problem and a five-class problem
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The Two-Category Case

B For the two-category case, the decision rule can be written as

wp  if g(x) >0

Decide .
woy otherwise

® The equation g(x) = 0 defines the decision boundary that separates points assigned
to wy from points assigned to ws.

® When g(x) is linear, the decision surface is a hyperplane whose orientation is
determined by the normal vector w and location is determined by the bias wy.
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Generalized Linear Discriminant Functions
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Generalized Linear Discriminant Functions

m The linear discriminant function g(x) is defined as

g(x) = wlx + wo (1)
d
= wqo + Z W; T4 (2)

where w = [wy,...,wq]T, and x = [z1,29,...,24]"
® We can obtain the quadratic discriminant function by adding second-order terms as

= wg + Z w;T; + Z Z Wi LT (3)

=1 j=1

Because x;jx; = xjx;, we can assume that w;; = wj; with no loss in generality.
Which result in more complicated decision boundaries. (hyperquadrics)
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Generalized Linear Discriminant Functions

® The quadratic discriminant function has an additional d(d + 1)/2 coefficients at its
disposal with which to produce more complicated separating surfaces.

® The separating surface defined by g(x) = 0 is a second-degree or hyperquadric
surface.

® |f the symmetric matrix, W = [w;;], is nonsingular, the linear term in g(x) can be
eliminated by translating the axes.
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Generalized Linear Discriminant Functions

® The basic character of the separating surface can be described in terms of scaled
matrix

where w = (wyq,. .., wd)T and W = [w;;]
B The types of quadratic separating surfaces that arise in the general multivariate

Gaussian case are as follows

1. If W is a positive multiple of the identity matrix, the separating surface is a hypersphere
such that W = k1.

2. If W is positive definite, the separating surfaces is a whose axes are in the
direction of the eigenvectors of W.

3. If none of the above cases holds, that is, some of the eigenvalues of are positive and
others are negative, the surface is one of the varieties of types of hyperhyperboloids.

17/40 Kundan Kumar Pattern Classification




Generalized LDF
0000e0000

Generalized Linear Discriminant Functions

® By continuing to add terms such as w;j,x;xjx), we can obtain the class of
polynomial discriminant functions. These can be thought of as truncated series
expansions of some arbitrary g(x), and this in turn suggest the generalized linear
discriminant function. A
d
T
Z azYz =a'y
=1

where a is a d—dimensional weight vector and d functions y;(x) are arbitrary
functions of x.

® The physical interpretation is that the functions y;(x) map points x from
d-dimensional space to point y in d-dimensional space.

® The resulting discriminant function is not linear in x, but it is linear in y.
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Generalized Linear Discriminant Functions

= Then, the discriminant g(x) = aly separates points in the transformed space using
a hyperplane passing through the origin.

The mapping to a higher dimensional space may increase the complexity of the
learning algorithms.

B However, certain assumptions can make the problem tractable.

Let the quadratic discriminant function be

g(x) = a1 + asx + asx>

So that the three-dimensional vector y is given by

y=[1 x <"
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Generalized Linear Discriminant Functions

Figure: The mapping y = (1 x x2)T takes a line and transforms it to a parabola in three dimensions. A plane
splits the resulting y space into regions corresponding to two categories, and this in turn gives a non-simply
connected decision region in the one-dimensional x space.
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Generalized Linear Discriminant Functions

222
2Ny
NI Sy
.
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Figure: The two-dimensional input space x is mapped through a polynomial function f to y. Here the mapping
isy1 =x1, y2 = x2 and y3 < x1x2 . A linear discriminant in this transformed space is a hyperplane, which cuts
the surface. Points to the positive side of the hyperplane H correspond to category wi , and those beneath it
wa. Here, in terms of the x space, R is a not simply connected.
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Problem to be solved

Question:
The following three decision functions are given for a three-class problem.

gl(X) = 10371 — T2 — 10=0
92(x) =1 + 222 —10=0
gg(X) =1 —2.%'2 —10=0

i. Sketch the decision boundary and regions for each pattern class.
ii. Assuming that each pattern class is pairwise linearly separable from every other class by a
distinct decision surface and letting
g12(x) = g1(x)
913(x) = g2(x)
923(x) = g3(x)

as listed above, sketch the decision boundary and regions for each pattern class.
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Two-category linearly separable case
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2-category linearly separable case

® Suppose, we have a set of n samples y1,...,y, some labeled w; and some labeled
w9.

m Note that all samples are augmented feature vectors.

® We want to use these samples to determine the weights a in a linear discriminant
function g(x) = aly.

® |f such a exists that

0 aly; >0 for all y; belonging to wy, and
o a’y; < 0 for all y; belonging to wy

samples y1,...,y, are called linearly separable.

® Then, it is reasonable to try to find such a that all the training samples are
classified correctly.
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2-category linearly separable case

®m Normalize the samples y1,...,v,: replace all y; labeled wy by their negatives.
solution solution
region Y2 region Y2

® With this normalized set of training samples, we can forget about labels and look
for the weight vector a that satisfies

aly; >0 for all y;.

® Such a is called a solution vector.
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Solution regions

A solution vector - if exists - is not unique. The set of possible solution vectors,
that are interpreted as points in ¢, is called the solution region.

®m More formally the solution region is the set
{ T, . . C
alay; >0; forallz—l,...,n}

B There are several ways to impose additional requirements to constrain the solution
vector.

One possibility is to seek a unit-length weight vector that maximizes the minimum
distance from the samples to the separating plane.
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Solution regions
® Another possibility is to seek the minimum-length weight vector satisfying
aly, >b, Vi=1,...,n

where, b is a positive constant, called the margin.
A

£
| solution N\
1 region N

solution
region
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Solving inequalities

® To find a solution to the set of linear inequalities
aTyi >0

we define a criterion function J(a) that is minimized if a is a solution.
This kind of problem can be solved by gradient descent.

The idea is very simple: Start with some vector a(1). Generate then a(2) by taking
a small step in the direction of —V.J(a(1)) and so on.

Explanation: —VJ(a(k)) is the direction of the steepest descent.
In general, a(k + 1) is obtained from a(k) by the equation

a(k +1) = a(k) — n(k)VJ(a(k)),

where 1 is a positive scale factor or learning rate that sets the step size.
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Basic gradient descent algorithm

Algorithm 1 (Basic gradient descent)

1 begin initialize a, criterion 6,7(-),k =0
2 dok<«+ k+1

3 a<a—n(k)VJ(a)

4 until n(k)VJ(a) <6

5 return a

6 end

B The learning rate can be set

_IVI@kR)?
(k) = VJ(a(k)  HV J(a(k))

where H is the Hessian at a(k).
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Newtons algorithm

Algorithm 2 (Newton descent)

1 begin initialize a, criterion 6 of o of

2 do 0x10x1 0x10xq
3 a+—a—H1'VJ(a) H(x) = : . :

4 until H_1VJ(a) <6 Bx(zgxl T 81:(3(];:51
5 return a e
¢ end

® Another possibility is to set the learning rate to be a constant that is small enough.
This makes one iteration of the descent algorithm much faster, but the descent
takes with a constant learning rate more iterations. There is no general answer how
to set the learning rate optimally: The best selection depends on the application.
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Minimizing Perceptron Criterion Function
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Perceptron Criterion Function

m Consider now the problem of constructing a criterion function for solving the linear
inequalities. Assume that the margin b = 0.

® The most obvious choice would be the number of samples misclassified by a.
However, this criterion is a piece-wise constant function and a poor candidate for a
gradient search.

® The perceptron criterion function is defined by
Jp(a) = Z _aTyv
yeY

where ) is the set of samples misclassified by a, i.e. samples for which the inner
product with a is negative.
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Perceptron Criterion Function

B The gradient

VJP - Z -y,

yey

® The update rule in gradient descent is

a(k+1) = a(k) +n(k) Y v

YEVk

where ), is the set of samples misclassified by a(k).
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Perceptron Algorithm

Algorithm 3 (Batch Perceptron)

1 begin initialize a,n(-), criterion 0,k =0

2 do k+ k+1
3 a<—a+nk) Y vy
yEYVk
4 until n(k) >> y <0
yEVk

5 return a
6 end

® A good feature of the perceptron algorithm is that it will converge to a solution
vector if training samples are linearly separable and the learning rate satisfies certain
conditions.

m A bad feature of the perceptron algorithm is that it does not (necessarily) converge
if the training samples are not linearly separable.
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Other criterion functions

® Relaxation Criterion: )
1 (aly —b)
=5 2
yeY Y
where b is the margin and ))(a) is the set of samples for which a’y < b.

® Sum-of-squared-error criterion:

n

Jy@) =|Iva—o|? =Y (aTy; - b)"
=1
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Minimum Squared-Error and the Pseudoinverse

® Let Y be the n x d matrix (d = d + 1), whose ith row is the vector y .

B Treat all linear equations simultaneously.
aTyZ-:b Vi=1,...,n

® Combining all linear equation in a matrix form

Yio Y11 o Yid ag by
Y20 Y21 ot Yad ar | by
Yn0 Ynl *°° Ynd aq bn
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Minimum Squared-Error and the Pseudoinverse

B \We seek for a weight vector a that minimizes some function of the error between Y'a and b.
e=Ya—b

B Sum-of-squared-error (SSE) criterion function:
n 2
Jo(a) =[[Ya—b]> =Y (aTyi - b)
=1

B Minimizing the criterion function

n

VJe=> 20"y, — by =2V (Ya—b) =0

=1
YTvya=Y"b
a=TY)'vy"p
a=Y'b

P 7 ———
B However, YT is defined more generally by [Y = il_{% Y Y+el)"Y ]
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Question:

Suppose we have the following two-dimensional point for two categories: wy: (1,2)7
and (2,0)7, and wo: (3,1)T and (2,3)7. Construct a Linear Classifier by Matrix
Pseudoinverse.

X2

4
3 [ ]
Ry
2 [ ) %
1 [ J
0 [ J
X
0 1 2 3 4t
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