[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

Pattern Classification EET3053 Lecture 06: Linear Discriminant Functions

Dr. Kundan Kumar Associate Professor

Department of ECE

Faculty of Engineering (ITER) S'O'A Deemed to be University, Bhubaneswar, India-751030 c 2021 Kundan Kumar, All Rights Reserved

Linear Discriminant Functions

- In parametric estimation, we assumed that the forms for the underlying probability densities were known, and used the training samples to estimate the values of their parameters.
- Instead, assume that the proper forms for the discriminant functions is known, and use the samples to estimate the values of parameters of the classifier.
- None of the various procedures for determining discriminant functions require knowledge of the forms of underlying probability distributions so called nonparametric approach.
- **Linear discriminant functions are relatively easy to compute and estimate the form** using training samples.

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

Linear discriminant functions and decisions surfaces

 \blacksquare A discriminant function is a linear combination of the components of x can be written as

$$
g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0
$$

where w is the weight vector and w_0 the bias or threshold weight.

- The equation $q(x) = 0$ defines the decision surface that separates points from different classes.
- Linear discriminant functions are going to be studied for
	- \Box two-category case,
	- □ multi-category case, and
	- \Box general case

For the general case there will be c such discriminant functions, one for each of c categories.

A two-category classifier with a discriminant function of the form $q(x) = w^T x + w_0$ uses the following rule:

$$
\text{Decide} \quad \begin{cases} \omega_1 & \text{if } g(x) > 0 \\ \omega_2 & \text{otherwise} \end{cases}
$$

- Thus, x is assigned to ω_1 if the inner product $\mathrm{w}^T\mathrm{x}$ exceeds the threshold $-w_0$ and to ω_2 otherwise.
- If $g(x) = 0$, x can ordinarily be assigned to either class, or can be left undefined.

A simple linear classifier implementation, a clear example of the general structure of a pattern recognition,

Figure: A simple linear classifier having d input units, each corresponding to the values of the components of an
incut usetes, Fash input fecture uslasses is multiplied by its assumed in purisht and the sutput unit sums a these products and emits +1 if $w^T x + w_0 > 0$ or -1 otherwise byits corresponding weight wi; the output unit sums all these products and emits a input vector. Each input feature value x_i is multiplied by its corresponding weight w_i ; the output unit sums all

The equation g(x) $=$ 0 defines that separates points as signed surface that separates μ

- The equation $q(x) = 0$ defines the decision surface that separates points assigned to the category ω_1 from points assigned to the category ω_2
- When $q(x)$ is linear, the decision surface is a hyperplane.
- If x_1 and x_2 are both on the decision surface, then

■ This shows that w is normal to any vector lying in the hyperplane.

 \blacksquare The discriminant function $g(\mathrm{x})$ gives an algebraic measure of the distance from x to the hyperplane. The easiest way to see this is to express x as

$$
\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

- where x_p is the normal projection of x onto H, and r is the desired algebraic distance which is positive if x is on the positive side and negative if x is on the negative side.
- Because, $g(x_p) = 0$

$$
r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}
$$

origin is on the positive side of H and if \mathcal{M} and if \mathcal{M} is on the negative side. If \mathcal{M}

- The distance from the origin to H is given by $\frac{w_0}{\|w\|}$.
- If $w_0 > 0$, the origin is on the positive side of H, and if $w_0 < 0$. it is on the negative side.
- If $w_0 = 0$, then $g(x)$ has the homogeneous form $\mathrm{w}^T\mathrm{x}$, and the hyperplane passes through the origin.

Figure: The linear decision boundary H, where $g(x) = \mathrm{w}^T\mathrm{x} + w_0$, separates the feature space into two half-spaces \mathcal{R}_1 (where $g(x) > 0$) and \mathcal{R}_2 (where $g(x) < 0$)) Figure: The linear decision boundary H , where

- In conclusion, a linear discriminant function divides the feature space by a hyperplane decision surface.
- \blacksquare The orientation of the surface is determined by the normal vector w and the location of the surface is determined by the bias w_0 .
- **The discriminant function** $q(x)$ is proportional to the signed distance from x to the hyperplane, with $g(x) > 0$ when x is on the positive side, and $g(x) < 0$ when x is on the negative side.

- $\;\blacksquare\;$ There is more than one way to devise multi-category classifiers employing linear discriminant functions.
	- \Box c two-class problem (one-vs-rest)

 \Box c(c − 1)/2 linear discriminants, one for every pair of classes (one-vs-one).

ω1

 \blacksquare More effective way is to define c linear discriminant functions

$$
g_i(x) = w_i^T x + w_{i0}
$$
 $i = 1, 2, ..., c$

and assign x to ω_i if $g_i(x) > g_j(x)$ for all $j \neq i$; in case of ties, the classification is undefined

- In this case, resulting classifier is a "linear machine".
- A linear machine divides the feature space into c decision regions, with $q_i(x)$ being the largest discriminant if x is in the region \mathcal{R}_i .
- For a two contiguous regions \mathcal{R}_i and \mathcal{R}_i ; the boundary that separates them is a portion of hyperplane H_{ij} defined by:

$$
g_i(x) = g_j(x)
$$
 or $(w_i - w_j)^T x + (w_{i0} - w_{j0}) = 0$

It follows at once that $w_i - w_j$ is normal to H_{ij} , and the signed distance from x to H_{ij} is given by

$$
r = \frac{(g_i(\mathbf{x}) - g_j(\mathbf{x}))}{\|\mathbf{w}_i - \mathbf{w}_j\|}
$$

Figure: Decision boundaries produced by a linear machine for a three-class problem and a five-class problem

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0) The Two-Category Case

 \blacksquare For the two-category case, the decision rule can be written as

$$
\text{Decide} \quad \left\{ \begin{array}{ll} \omega_1 & \text{if } g(\mathbf{x}) > 0 \\ \omega_2 & \text{otherwise} \end{array} \right.
$$

- The equation $q(x) = 0$ defines the decision boundary that separates points assigned to ω_1 from points assigned to ω_2 .
- When $q(x)$ is linear, the decision surface is a hyperplane whose orientation is determined by the normal vector w and location is determined by the bias w_0 .

 \blacksquare The linear discriminant function $q(x)$ is defined as

$$
g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 \tag{1}
$$

$$
= w_0 + \sum_{i=1}^d w_i x_i \tag{2}
$$

where $\boldsymbol{\mathrm{w}}=[w_1,\ldots,w_d]^T$, and $\boldsymbol{\mathrm{x}}=[x_1,x_2,\ldots,x_d]^T$

 \blacksquare We can obtain the *quadratic discriminant function* by adding second-order terms as

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

$$
g(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j \tag{3}
$$

Because $x_ix_j = x_jx_i$, we can assume that $w_{ij} = w_{ji}$ with no loss in generality. Which result in more complicated decision boundaries. (hyperquadrics)

The quadratic discriminant function has an additional $d(d+1)/2$ coefficients at its disposal with which to produce more complicated separating surfaces.

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

- The separating surface defined by $g(x) = 0$ is a second-degree or hyperquadric surface.
- If the symmetric matrix, $W = [w_{ij}]$, is nonsingular, the linear term in $q(x)$ can be eliminated by translating the axes.

 The basic character of the separating surface can be described in terms of scaled matrix

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

$$
\overline{W} = \frac{W}{w^T W^{-1} w - 4w_0}
$$

where $\boldsymbol{\mathrm{w}}=(w_1,\ldots,w_d)^T$ and $\boldsymbol{\mathrm{W}}=[w_{ij}]$

- \blacksquare The types of quadratic separating surfaces that arise in the general multivariate Gaussian case are as follows
	- 1. If W is a positive multiple of the identity matrix, the separating surface is a *hypersphere* such that $\overline{W} = kI$.
	- 2. If W is positive definite, the separating surfaces is a *hyperellipsoid* whose axes are in the direction of the eigenvectors of W .
	- 3. If none of the above cases holds, that is, some of the eigenvalues of are positive and others are negative, the surface is one of the varieties of types of hyperhyperboloids.

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

Generalized Linear Discriminant Functions

By continuing to add terms such as $w_{ijk}x_ix_jx_k$, we can obtain the class of polynomial discriminant functions. These can be thought of as truncated series expansions of some arbitrary $g(x)$, and this in turn suggest the generalized linear discriminant function.

$$
g(\mathbf{x}) = \sum_{i=1}^{\hat{d}} a_i \mathbf{y}_i(\mathbf{x}) = \mathbf{a}^T \mathbf{y}
$$

where a is a \hat{d} −dimensional weight vector and \hat{d} functions $y_i(x)$ are arbitrary functions of x.

- **The physical interpretation is that the functions** $y_i(x)$ **map points x from** d-dimensional space to point y in d -dimensional space.
- \blacksquare The resulting discriminant function is not linear in x, but it is linear in y.

Then, the discriminant $q(x) = a^T y$ separates points in the transformed space using a hyperplane passing through the origin.

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

- The mapping to a higher dimensional space may increase the complexity of the learning algorithms.
- However, certain assumptions can make the problem tractable.
- Let the quadratic discriminant function be

$$
g(x) = a_1 + a_2x + a_3x^2
$$

So that the three-dimensional vector y is given by

$$
\mathbf{y} = [1 \ \mathbf{x} \ \mathbf{x}^2]^T
$$

[Linear Discriminant Functions](#page-1-0) Two-category Multi-category Generalized LDF [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0) ns [T](#page-26-0)wo-category Multi-category Generalized LDF Linearly-separable-case Perceptron

Generalized Linear Discriminant Functions

Figure: The mapping $y = (1 + x^2)^T$ takes a line and transforms it to a parabola in three dimensions. A plane splits the resulting y space into regions corresponding to two categories, and this in turn gives a non-simply connected decision region in the one-dimensional ${\bf x}$ space.

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

Generalized Linear Discriminant Functions

Figure: The two-dimensional input space x is mapped through a polynomial function f to y. Here the mapping is $y_1=x_1$, $y_2=x_2$ and $y_3\propto x_1x_2$. A linear discriminant in this transformed space is a hyperplane, which cuts the surface. Points to the positive side of the hyperplane \hat{H} correspond to category ω_1 , and those beneath it $\omega_2.$ Here, in terms of the x space, \mathcal{R}_1 is a not simply connected.

Problem to be solved

Question:

The following three decision functions are given for a three-class problem.

 $q_1(\mathbf{x}) = 10x_1 - x_2 - 10 = 0$ $q_2(\mathbf{x}) = x_1 + 2x_2 - 10 = 0$ $g_3(x) = x_1 - 2x_2 - 10 = 0$

- i. Sketch the decision boundary and regions for each pattern class.
- ii. Assuming that each pattern class is pairwise linearly separable from every other class by a distinct decision surface and letting

$$
g_{12}(\mathbf{x}) = g_1(\mathbf{x})
$$

\n
$$
g_{13}(\mathbf{x}) = g_2(\mathbf{x})
$$

\n
$$
g_{23}(\mathbf{x}) = g_3(\mathbf{x})
$$

as listed above, sketch the decision boundary and regions for each pattern class.

Two-category linearly separable case

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

2-category linearly separable case

- Suppose, we have a set of n samples y_1, \ldots, y_n some labeled ω_1 and some labeled $ω_2$.
- Note that all samples are augmented feature vectors.
- We want to use these samples to determine the weights a in a linear discriminant function $q(x) = a^T y$.
- \blacksquare If such a exists that

```
\Box \mathrm{a}^T \mathrm{y}_i > 0 for all \mathrm{y}_i belonging to \omega_1, and
```

```
\Box \mathrm{a}^T \mathrm{y}_i < 0 for all \mathrm{y}_i belonging to \omega_2
```
samples y_1, \ldots, y_n are called linearly separable.

■ Then, it is reasonable to try to find such a that all the training samples are classified correctly.

2-category linearly separable case corresponding to any particular category. A twoillustration \mathbf{r} is the solution region for both the union \mathbf{r}

Normalize the samples y_1, \ldots, y_n : replace all y_i labeled ω_2 by their negatives.

 \blacksquare With this normalized set of training samples, we can forget about labels and look for the weight vector a that satisfies \sim plane that separates that separates the two categories. In the figure on the

$$
\mathbf{a}^T \mathbf{y}_i > 0 \qquad \text{for all } \mathbf{y}_i.
$$

 $\frac{1}{2}$ from this discussion, it should be clear that the solution vector $\frac{1}{2}$ is it in its interval of $\frac{1}{2}$ ■ Such a is called a solution vector.

- \blacksquare A solution vector if exists is not unique. The set of possible solution vectors, that are interpreted as points in \Re^d , is called the solution region.
- \blacksquare More formally the solution region is the set

 ${a^T y_i > 0; \text{ for all } i = 1, ..., n}$

- **There are several ways to impose additional requirements to constrain the solution** vector.
- One possibility is to seek a unit-length weight vector that maximizes the minimum distance from the samples to the separating plane.

■ Another possibility is to seek the minimum-length weight vector satisfying

$$
\mathbf{a}^T \mathbf{y}_i \geq b, \ \ \forall \ i = 1, \dots, n
$$

where, b is a positive constant, called the margin.

■ To find a solution to the set of linear inequalities

 $\mathbf{a}^T \mathbf{y}_i > 0$

we define a criterion function $J(a)$ that is minimized if a is a solution.

- This kind of problem can be solved by gradient descent.
- **The idea is very simple: Start with some vector** $a(1)$. Generate then $a(2)$ by taking a small step in the direction of $-\nabla J(a(1))$ and so on.
- Explanation: $-\nabla J(a(k))$ is the direction of the steepest descent.
- In general, $a(k + 1)$ is obtained from $a(k)$ by the equation

$$
a(k+1) = a(k) - \eta(k)\nabla J(a(k)),
$$

where η is a positive scale factor or learning rate that sets the step size.

that such a sequence of weight vectors will converge to a solution minimizing \sim solution minimizing \sim solution minimizing \sim asie graaient aeseeme

Algorithm 1 (Basic gradient descent)

- 1 **begin initialize a**, criterion θ , $\eta(\cdot)$, $k = 0$
a **do** $k \leftarrow k+1$ 2 do $k \leftarrow k+1$
3 $a \leftarrow a-n$ $\mathbf{a} \leftarrow \mathbf{a} - \eta(k) \nabla J(\mathbf{a})$ until $\eta(k)\nabla J(\mathbf{a}) < \theta$ ⁵ return a 6 end
-

a value a(k) as

 $\nabla J(\mathbf{a}(k))^T H \nabla J(\mathbf{a}(k))$

can even diverge (Sect. 5.6.1). where H is the Hessian at $\mathrm{a}(k).$

Algorithm 2 (Newton descent) \overline{M} : Ref. \overline{M}

leading to the following algorithm:

 \blacksquare Another possibility is to set the learning rate to be a constant that is small enough. This makes one iteration of the descent algorithm much faster, but the descent takes with a constant learning rate more iterations. There is no general answer how to set the learning rate optimally: The best selection depends on the application. matrix inversion on each iteration can easily on easily of $\mathcal{L}_{\mathcal{A}}$

Minimizing Perceptron Criterion Function

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0) Perceptron Criterion Function

- Consider now the problem of constructing a criterion function for solving the linear inequalities. Assume that the margin $b = 0$.
- The most obvious choice would be the number of samples misclassified by a. However, this criterion is a piece-wise constant function and a poor candidate for a gradient search.
- The perceptron criterion function is defined by

$$
J_p(\mathbf{a}) = \sum_{\mathbf{y} \in \mathcal{Y}} -\mathbf{a}^T \mathbf{y},
$$

where $\mathcal Y$ is the set of samples misclassified by a, i.e. samples for which the inner product with a is negative.

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

Perceptron Criterion Function

The gradient

$$
\nabla J_p = \sum_{\mathbf{y} \in \mathcal{Y}} -\mathbf{y},
$$

■ The update rule in gradient descent is

$$
a(k + 1) = a(k) + \eta(k) \sum_{y \in \mathcal{Y}_k} y
$$

where \mathcal{Y}_k is the set of samples misclassified by $a(k)$.

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0) Perceptron Algorithm Percentron Criteria where Yk is the set of samples misclassified by a factor \mathcal{L} . Thus the Perceptron algorithm algorithm algorithm

Algorithm 3 (Batch Perceptron)

1 **begin initialize** $a, \eta(\cdot)$, criterion $\theta, k = 0$ 2 do $k \leftarrow k+1$ 3 $\mathbf{a} \leftarrow \mathbf{a} + \eta(k) \sum_{k=1}^{n}$ $\mathbf{y}\in\mathcal{Y}_k$ y 4 **until** $\eta(k) \sum y < \theta$ $\mathbf{v} \in \mathcal{V}_k$ ⁵ return a 6 end

- A good feature of the perceptron algorithm is that it will converge to a solution vector if training samples are linearly separable and the learning rate satisfies certain conditions.
- \blacksquare A bad feature of the perceptron algorithm is that it does not (necessarily) converge if the training samples are not linearly separable.

Other criterion functions

Relaxation Criterion:

$$
J_r(\mathbf{a}) = \frac{1}{2} \sum_{y \in \mathcal{Y}} \frac{(\mathbf{a}^T \mathbf{y} - b)^2}{\left\| \mathbf{y} \right\|^2}
$$

where b is the margin and $\mathcal{Y}(\text{a})$ is the set of samples for which $\text{a}^T\text{y} \leq b$.

■ Sum-of-squared-error criterion:

$$
J_s(a) = ||Ya - b||^2 = \sum_{i=1}^{n} (a^T y_i - b)^2
$$

Minimum Squared-Error and the Pseudoinverse

- **Let** Y be the $n \times \hat{d}$ matrix $(\hat{d} = d + 1)$, whose ith row is the vector y_i^T .
- **Treat all linear equations simultaneously.**

$$
\mathbf{a}^T \mathbf{y}_i = \mathbf{b} \qquad \forall i = 1, \dots, n
$$

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

■ Combining all linear equation in a matrix form

$$
\begin{bmatrix}\ny_{10} & y_{11} & \cdots & y_{1d} \\
y_{20} & y_{21} & \cdots & y_{2d} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n0} & y_{n1} & \cdots & y_{nd}\n\end{bmatrix}\n\begin{bmatrix}\na_0 \\
a_1 \\
\vdots \\
a_d\n\end{bmatrix} =\n\begin{bmatrix}\nb_1 \\
b_2 \\
\vdots \\
b_n\n\end{bmatrix}
$$
\n
$$
(Ya = b)
$$

[Linear Discriminant Functions](#page-1-0) [Two-category](#page-4-0) [Multi-category](#page-10-0) [Generalized LDF](#page-14-0) [Linearly separable case](#page-23-0) [Perceptron Criteria](#page-31-0) [References](#page-39-0)

Minimum Squared-Error and the Pseudoinverse

 \blacksquare We seek for a weight vector a that minimizes some function of the error between Ya and b.

 $e = Ya - b$

■ Sum-of-squared-error (SSE) criterion function:

$$
J_s(a) = ||Ya - b||^2 = \sum_{i=1}^{n} (a^T y_i - b)^2
$$

Minimizing the criterion function

$$
\nabla J_s = \sum_{i=1}^n 2(\mathbf{a}^T \mathbf{y}_i - \mathbf{b}_i) \mathbf{y}_i = 2Y^T (Y \mathbf{a} - \mathbf{b}) = 0
$$

$$
Y^T Y \mathbf{a} = Y^T \mathbf{b}
$$

$$
\mathbf{a} = (Y^T Y)^{-1} Y^T \mathbf{b}
$$

$$
\mathbf{a} = Y^{\dagger} \mathbf{b}
$$

 \blacksquare However, Y^\dagger is defined more generally by $\bigl|\,{}^Y$

$$
Y^{\dagger} \equiv \lim_{\varepsilon \to 0} (Y^T Y + \varepsilon I)^{-1} Y^T
$$

Question:

Suppose we have the following two-dimensional point for two categories: ω_1 : $(1,2)^T$ and $(2,0)^T$, and $\omega_2\!\!: \, (3,1)^T$ and $(2,3)^T$. Construct a Linear Classifier by Matrix Pseudoinverse.

x2

- [1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.
- [2] Gose, E. (1997). Pattern recognition and image analysis.

Thank you!