Linear Discriminant Functions

wo-category 00000 Multi-category

eralized LDF L

Linearly separable case

rceptron Criteria Ref

Pattern Classification EET3053

Dr. Kundan Kumar Associate Professor

Department of ECE

Faculty of Engineering (ITER) S'O'A Deemed to be University, Bhubaneswar, India-751030 © 2021 Kundan Kumar, All Rights Reserved

Linear Discriminant Functions	Two-category	Multi-category	Generalized LDF	Linearly separable case	Perceptron Criteria	References
000						

Linear Discriminant Functions

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 00
Introduction						

- In parametric estimation, we assumed that the forms for the underlying probability densities were known, and used the training samples to estimate the values of their parameters.
- Instead, assume that the proper forms for the discriminant functions is known, and use the samples to estimate the values of parameters of the classifier.
- None of the various procedures for determining discriminant functions require knowledge of the forms of underlying probability distributions so called nonparametric approach.
- Linear discriminant functions are relatively easy to compute and estimate the form using training samples.

Linear discriminant functions and decisions surfaces

 A discriminant function is a linear combination of the components of x can be written as

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

where w is the weight vector and w_0 the bias or threshold weight.

- The equation g(x) = 0 defines the decision surface that separates points from different classes.
- Linear discriminant functions are going to be studied for
 - □ two-category case,
 - $\hfill\square$ multi-category case, and
 - □ general case

Linear Discriminant Functions

000

For the general case there will be c such discriminant functions, one for each of c categories.

References

A two-category classifier with a discriminant function of the form g(x) = w^Tx + w₀ uses the following rule:

Decide
$$\begin{cases} \omega_1 & \text{if } g(\mathbf{x}) > 0\\ \omega_2 & \text{otherwise} \end{cases}$$

- Thus, x is assigned to ω_1 if the inner product $w^T x$ exceeds the threshold $-w_0$ and to ω_2 otherwise.
- If g(x) = 0, x can ordinarily be assigned to either class, or can be left undefined.

Linear Discriminant Functions	Two-category 0●0000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 00
A · I I·	1					

A simple linear classifier

Figure: A simple linear classifier having d input units, each corresponding to the values of the components of an input vector. Each input feature value x_i is multiplied by its corresponding weight w_i ; the output unit sums all these products and emits +1 if $w^T x + w_0 > 0$ or -1 otherwise

Linear Discriminant Functions	Two-category 00●000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 00
Two-Category	Case					

- The equation g(x) = 0 defines the decision surface that separates points assigned to the category \u03c6₁ from points assigned to the category \u03c6₂
- When $g(\mathbf{x})$ is linear, the decision surface is a hyperplane.
- \blacksquare If x_1 and x_2 are both on the decision surface, then

• This shows that w is normal to any vector lying in the hyperplane.

The discriminant function g(x) gives an algebraic measure of the distance from x to the hyperplane. The easiest way to see this is to express x as

$$\mathbf{x} = \mathbf{x}_p + r \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

- where x_p is the normal projection of x onto H, and r is the desired algebraic distance which is positive if x is on the positive side and negative if x is on the negative side.
- Because, $g(\mathbf{x}_p) = 0$

$$r = \frac{g(\mathbf{x})}{\|\mathbf{w}\|}$$

Linear Discriminant Functions	Two-category 0000●0	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 00
Two_Category	Case					

- The distance from the origin to *H* is given by ^{w₀}/_{||w||}.
- If w₀ > 0, the origin is on the positive side of H, and if w₀ < 0, it is on the negative side.</p>
- If w₀ = 0, then g(x) has the homogeneous form w^Tx, and the hyperplane passes through the origin.

Figure: The linear decision boundary H, where $g(x) = w^T x + w_0$, separates the feature space into two half-spaces \mathcal{R}_1 (where g(x) > 0) and \mathcal{R}_2 (where g(x) < 0))

- In conclusion, a linear discriminant function divides the feature space by a hyperplane decision surface.
- The orientation of the surface is determined by the normal vector w and the location of the surface is determined by the bias w₀.
- The discriminant function g(x) is proportional to the signed distance from x to the hyperplane, with g(x) > 0 when x is on the positive side, and g(x) < 0 when x is on the negative side.</p>

Linear Discriminant Functions	I wo-category	●000	Generalized LDF	Linearly separable case	00000000	References 00

Multi-category case

- There is more than one way to devise multi-category classifiers employing linear discriminant functions.
 - c two-class problem
 (one-vs-rest)

□ c(c-1)/2 linear discriminants, one for every pair of classes (one-vs-one).

Pink regions have ambiguous category assignment.

10/40	Kundan Kumar	Pattern Classification

Linear Discriminant Functions	Two-category 000000	Multi-category 0●00	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 00
Multi-category	COSA					

 $\hfill\blacksquare$ More effective way is to define c linear discriminant functions

$$g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}$$
 $i = 1, 2, \dots, c$

and assign x to ω_i if $g_i(\mathbf{x}) > g_j(\mathbf{x})$ for all $j \neq i$; in case of ties, the classification is undefined

- In this case, resulting classifier is a "linear machine".
- A linear machine divides the feature space into c decision regions, with g_i(x) being the largest discriminant if x is in the region R_i.
- For a two contiguous regions R_i and R_j; the boundary that separates them is a portion of hyperplane H_{ij} defined by:

$$g_i(\mathbf{x}) = g_j(\mathbf{x})$$
 or $(\mathbf{w}_i - \mathbf{w}_j)^T \mathbf{x} + (w_{i0} - w_{j0}) = 0$

Linear Discriminant Functions	Two-category 000000	Multi-category 00●0	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 00

Multi-category case

• It follows at once that $w_i - w_j$ is normal to H_{ij} , and the signed distance from x to H_{ij} is given by

$$r = \frac{(g_i(\mathbf{x}) - g_j(\mathbf{x}))}{\|\mathbf{w}_i - \mathbf{w}_j\|}$$

Figure: Decision boundaries produced by a linear machine for a three-class problem and a five-class problem

Linear Discriminant Functions	Two-category 000000	Multi-category 000●	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 00
The Two-Cate	gory Cas	e				

For the two-category case, the decision rule can be written as

Decide
$$\left\{ egin{array}{cc} \omega_1 & \mbox{if } g({
m x}) > 0 \\ \omega_2 & \mbox{otherwise} \end{array}
ight.$$

- The equation g(x) = 0 defines the decision boundary that separates points assigned to ω₁ from points assigned to ω₂.
- When g(x) is linear, the decision surface is a hyperplane whose orientation is determined by the normal vector w and location is determined by the bias w₀.

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF ●00000000	Linearly separable case	Perceptron Criteria	References 00

• The linear discriminant function $g(\mathbf{x})$ is defined as

Multi-category

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0 \tag{1}$$

$$= w_0 + \sum_{i=1}^d w_i x_i$$
 (2)

where $\mathbf{w} = [w_1, \dots, w_d]^T$, and $\mathbf{x} = [x_1, x_2, \dots, x_d]^T$

• We can obtain the *quadratic discriminant function* by adding second-order terms as

Generalized I DF

00000000

$$g(\mathbf{x}) = w_0 + \sum_{i=1}^d w_i x_i + \sum_{i=1}^d \sum_{j=1}^d w_{ij} x_i x_j$$
(3)

Because $x_i x_j = x_j x_i$, we can assume that $w_{ij} = w_{ji}$ with no loss in generality. Which result in more complicated decision boundaries. (hyperquadrics) References

- The quadratic discriminant function has an additional d(d+1)/2 coefficients at its disposal with which to produce more complicated separating surfaces.
- The separating surface defined by $g(\mathbf{x}) = 0$ is a second-degree or hyperquadric surface.
- If the symmetric matrix, $W = [w_{ij}]$, is nonsingular, the linear term in g(x) can be eliminated by translating the axes.

 The basic character of the separating surface can be described in terms of scaled matrix

$$\bar{\mathbf{W}} = \frac{\mathbf{W}}{\mathbf{w}^T \mathbf{W}^{-1} \mathbf{w} - 4w_0}$$

Generalized LDE

000000000

where $\mathbf{w} = (w_1, \dots, w_d)^T$ and $\mathbf{W} = [w_{ij}]$

- The types of quadratic separating surfaces that arise in the general multivariate Gaussian case are as follows
 - 1. If \bar{W} is a positive multiple of the identity matrix, the separating surface is a *hypersphere* such that $\bar{W} = kI$.
 - 2. If \overline{W} is positive definite, the separating surfaces is a *hyperellipsoid* whose axes are in the direction of the eigenvectors of \overline{W} .
 - 3. If none of the above cases holds, that is, some of the eigenvalues of are positive and others are negative, the surface is one of the varieties of types of *hyperhyperboloids*.

Linear Discriminant Functions

References

By continuing to add terms such as w_{ijk}x_ix_jx_k, we can obtain the class of polynomial discriminant functions. These can be thought of as truncated series expansions of some arbitrary g(x), and this in turn suggest the generalized linear discriminant function.

$$g(\mathbf{x}) = \sum_{i=1}^{d} a_i \mathbf{y}_i(\mathbf{x}) = \mathbf{a}^T \mathbf{y}$$

where a is a $\hat{d}-{\rm dimensional}$ weight vector and \hat{d} functions $y_i(x)$ are arbitrary functions of x.

- The physical interpretation is that the functions y_i(x) map points x from d-dimensional space to point y in d̂-dimensional space.
- The resulting discriminant function is not linear in x, but it is linear in y.

- Then, the discriminant g(x) = a^Ty separates points in the transformed space using a hyperplane passing through the origin.
- The mapping to a higher dimensional space may increase the complexity of the learning algorithms.
- However, certain assumptions can make the problem tractable.
- Let the quadratic discriminant function be

$$g(\mathbf{x}) = a_1 + a_2 \mathbf{x} + a_3 \mathbf{x}^2$$

 $\hfill\blacksquare$ So that the three-dimensional vector \boldsymbol{y} is given by

$$\mathbf{y} = \begin{bmatrix} 1 & \mathbf{x} & \mathbf{x}^2 \end{bmatrix}^T$$

References

Linear Discriminant Functions Two-category Multi-category October Octo

Generalized Linear Discriminant Functions

Figure: The mapping $y = (1 \ x \ x^2)^T$ takes a line and transforms it to a parabola in three dimensions. A plane splits the resulting y space into regions corresponding to two categories, and this in turn gives a non-simply connected decision region in the one-dimensional x space.

Generalized Linear Discriminant Functions

Figure: The two-dimensional input space x is mapped through a polynomial function f to y. Here the mapping is $y_1 = x_1$, $y_2 = x_2$ and $y_3 \propto x_1 x_2$. A linear discriminant in this transformed space is a hyperplane, which cuts the surface. Points to the positive side of the hyperplane \hat{H} correspond to category ω_1 , and those beneath it ω_2 . Here, in terms of the x space, \mathcal{R}_1 is a not simply connected.

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 00000000●	Linearly separable case	Perceptron Criteria	References 00
Problem to be	solved					

Question:

The following three decision functions are given for a three-class problem.

 $g_1(\mathbf{x}) = 10x_1 - x_2 - 10 = 0$ $g_2(\mathbf{x}) = x_1 + 2x_2 - 10 = 0$ $g_3(\mathbf{x}) = x_1 - 2x_2 - 10 = 0$

- i. Sketch the decision boundary and regions for each pattern class.
- ii. Assuming that each pattern class is pairwise linearly separable from every other class by a distinct decision surface and letting

$$g_{12}(\mathbf{x}) = g_1(\mathbf{x})$$

 $g_{13}(\mathbf{x}) = g_2(\mathbf{x})$
 $g_{23}(\mathbf{x}) = g_3(\mathbf{x})$

as listed above, sketch the decision boundary and regions for each pattern class.

	22/40	Kundan Kumar	Pattern Classification
--	-------	--------------	------------------------

Linear Discriminant Functions	Two-category	Multi-category	Generalized LDF	Linearly separable case	Perceptron Criteria	References
				●0000000		

Two-category linearly separable case

2-category linearly separable case

- Suppose, we have a set of n samples y_1, \ldots, y_n some labeled ω_1 and some labeled ω_2 .
- Note that all samples are augmented feature vectors.
- We want to use these samples to determine the weights a in a linear discriminant function g(x) = a^Ty.
- $\hfill\blacksquare$ If such a exists that

```
\Box a^{T}y_{i} > 0 \text{ for all } y_{i} \text{ belonging to } \omega_{1}, \text{ and}\Box a^{T}y_{i} < 0 \text{ for all } y_{i} \text{ belonging to } \omega_{2}
```

samples y_1, \ldots, y_n are called linearly separable.

• Then, it is reasonable to try to find such a that all the training samples are classified correctly.

2-category linearly separable case

• Normalize the samples y_1, \ldots, y_n : replace all y_i labeled ω_2 by their negatives.

 With this normalized set of training samples, we can forget about labels and look for the weight vector a that satisfies

$$\mathbf{a}^T \mathbf{y}_i > 0$$
 for all \mathbf{y}_i .

Such a is called a solution vector.

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 00
Solution regior	าร					

- A solution vector if exists is not unique. The set of possible solution vectors, that are interpreted as points in R^d, is called the solution region.
- More formally the solution region is the set

 $\left\{\mathbf{a} \mid \mathbf{a}^T \mathbf{y}_i > 0; \quad \text{for all } i = 1, \dots, n\right\}$

- There are several ways to impose additional requirements to constrain the solution vector.
- One possibility is to seek a unit-length weight vector that maximizes the minimum distance from the samples to the separating plane.

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 00
Solution ragion						

Solution regions

Another possibility is to seek the minimum-length weight vector satisfying

$$\mathbf{a}^T \mathbf{y}_i \ge b, \quad \forall \ i = 1, \dots, n$$

where, \boldsymbol{b} is a positive constant, called the margin.

2

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case 00000●00	Perceptron Criteria	References 00
Solving inequa	lities					

To find a solution to the set of linear inequalities

 $\mathbf{a}^T \mathbf{y}_i > 0$

we define a criterion function $J(\mathbf{a})$ that is minimized if \mathbf{a} is a solution.

- This kind of problem can be solved by gradient descent.
- The idea is very simple: Start with some vector a(1). Generate then a(2) by taking a small step in the direction of $-\nabla J(a(1))$ and so on.
- Explanation: $-\nabla J(\mathbf{a}(k))$ is the direction of the steepest descent.
- $\hfill \hfill \hfill$

$$\mathbf{a}(k+1) = \mathbf{a}(k) - \eta(k) \nabla J(\mathbf{a}(k)),$$

where η is a positive scale factor or learning rate that sets the step size.

Basic gradient descent algorithm

Algorithm 1 (Basic gradient descent)

1 **<u>begin</u>** initialize **a**, criterion $\theta, \eta(\cdot), k = 0$

 $2 \quad \underline{\mathbf{do}} \ k \leftarrow k+1$

- 3 $\mathbf{a} \leftarrow \mathbf{a} \eta(k) \nabla J(\mathbf{a})$ 4 $\operatorname{until} \eta(k) \nabla J(\mathbf{a}) < \theta$
- $4 \quad \underline{\text{until}} \ \eta(\kappa) \mathbf{v} J(\mathbf{a})$
- 5 <u>return</u> a

6 <u>end</u>

The learning rate can be set

 $\eta(k) = \frac{\|\nabla J(\mathbf{a}(k))\|^2}{\nabla J(\mathbf{a}(k))^T H \nabla J(\mathbf{a}(k))}$

where H is the Hessian at a(k).

29/40

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case 0000000●	Perceptron Criteria	References 00
Newtons algori	thm					

Algorithm 2 (Newton descent)

¹ <u>begin</u> <u>initialize</u> a , criterion θ	Г	∂f	 $\frac{\partial f}{\partial f}$
2 do		$\partial x_1 \partial x_1$	$\partial x_1 \partial x_d$
3 $\mathbf{a} \leftarrow \mathbf{a} - \mathbf{H}^{-1} \nabla J(\mathbf{a})$	$\mathbf{H}(\mathbf{x}) = $	÷	:
$4 \qquad \underline{\text{until}} \ \mathbf{H}^{-1} \nabla J(\mathbf{a}) < \theta$		$\frac{\partial f}{\partial x_{1}\partial x_{2}}$	 $\frac{\partial f}{\partial x_{1}\partial x_{2}}$
5 <u>return</u> a	_	Ox_dOx_1	$0x_d0x_d$ -
6 <u>end</u>			

Another possibility is to set the learning rate to be a constant that is small enough. This makes one iteration of the descent algorithm much faster, but the descent takes with a constant learning rate more iterations. There is no general answer how to set the learning rate optimally: The best selection depends on the application.

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria ●0000000	References 00

Minimizing Perceptron Criterion Function

- Consider now the problem of constructing a criterion function for solving the linear inequalities. Assume that the margin b = 0.
- The most obvious choice would be the number of samples misclassified by a. However, this criterion is a piece-wise constant function and a poor candidate for a gradient search.
- The perceptron criterion function is defined by

$$J_p(\mathbf{a}) = \sum_{\mathbf{y} \in \mathcal{Y}} -\mathbf{a}^T \mathbf{y},$$

where ${\cal Y}$ is the set of samples misclassified by a, i.e. samples for which the inner product with a is negative.

Perceptron Criterion Function

The gradient

$$\nabla J_p = \sum_{\mathbf{y} \in \mathcal{Y}} -\mathbf{y},$$

The update rule in gradient descent is

$$\mathbf{a}(k+1) = \mathbf{a}(k) + \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_k} \mathbf{y}$$

where \mathcal{Y}_k is the set of samples misclassified by a(k).

Algorithm 3 (Batch Perceptron)

 $1 \underbrace{\text{begin initialize}}_{2} \mathbf{a}, \eta(\cdot), \text{criterion } \theta, k = 0$ $2 \underbrace{\text{do}}_{k} \mathbf{k} \leftarrow k + 1$ $3 \mathbf{a} \leftarrow \mathbf{a} + \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_{k}} \mathbf{y}$ $4 \underbrace{\text{until}}_{5} \eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_{k}} \mathbf{y} < \theta$ $5 \underbrace{\text{return } \mathbf{a}}_{6} \mathbf{end}$

- A good feature of the perceptron algorithm is that it will converge to a solution vector if training samples are linearly separable and the learning rate satisfies certain conditions.
- A bad feature of the perceptron algorithm is that it does not (necessarily) converge if the training samples are not linearly separable.

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria 0000●000	References 00
Other criterion	function	S				

Relaxation Criterion:

$$J_r(\mathbf{a}) = \frac{1}{2} \sum_{y \in \mathcal{Y}} \frac{\left(\mathbf{a}^T \mathbf{y} - b\right)^2}{\|\mathbf{y}\|^2}$$

where b is the margin and $\mathcal{Y}(\mathbf{a})$ is the set of samples for which $\mathbf{a}^T \mathbf{y} \leq b$.

Sum-of-squared-error criterion:

$$J_s(\mathbf{a}) = ||Y\mathbf{a} - b||^2 = \sum_{i=1}^n (\mathbf{a}^T \mathbf{y}_i - b)^2$$

Minimum Squared-Error and the Pseudoinverse

- Let Y be the $n \times \hat{d}$ matrix ($\hat{d} = d + 1$), whose ith row is the vector y_i^T .
- Treat all linear equations simultaneously.

Linear Discriminant Functions

$$\mathbf{a}^T \mathbf{y}_i = \mathbf{b} \qquad \forall i = 1, \dots, n$$

Combining all linear equation in a matrix form

$$\begin{bmatrix} y_{10} & y_{11} & \cdots & y_{1d} \\ y_{20} & y_{21} & \cdots & y_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n0} & y_{n1} & \cdots & y_{nd} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$
$$\boxed{Ya = b}$$

Perceptron Criteria

Linear Discriminant Functions Two-category Multi-category Generalized LDF Linearly separable case Perceptron Criteria

Minimum Squared-Error and the Pseudoinverse

 \blacksquare We seek for a weight vector a that minimizes some function of the error between Ya and b.

e = Ya - b

Sum-of-squared-error (SSE) criterion function:

$$J_s(\mathbf{a}) = ||Y\mathbf{a} - b||^2 = \sum_{i=1}^n (\mathbf{a}^T \mathbf{y}_i - b)^2$$

Minimizing the criterion function

$$\nabla J_s = \sum_{i=1}^n 2(\mathbf{a}^T \mathbf{y}_i - \mathbf{b}_i)\mathbf{y}_i = 2Y^T(Y\mathbf{a} - \mathbf{b}) = 0$$
$$Y^T Y\mathbf{a} = Y^T \mathbf{b}$$
$$\mathbf{a} = (Y^T Y)^{-1} Y^T \mathbf{b}$$
$$\mathbf{a} = Y^{\dagger} \mathbf{b}$$

• However, Y^{\dagger} is defined more generally by

$$Y^{\dagger} \equiv \lim_{\varepsilon \to 0} \left(Y^T Y + \varepsilon I \right)^{-1} Y^T$$

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria 0000000●	References 00
Example						

Question:

Suppose we have the following two-dimensional point for two categories: ω_1 : $(1,2)^T$ and $(2,0)^T$, and ω_2 : $(3,1)^T$ and $(2,3)^T$. Construct a Linear Classifier by Matrix Pseudoinverse.

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References ●0
References						

- [1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.
- [2] Gose, E. (1997). Pattern recognition and image analysis.

Linear Discriminant Functions	Two-category 000000	Multi-category 0000	Generalized LDF 000000000	Linearly separable case	Perceptron Criteria	References 0●

Thank you!