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Introduction

� In parametric estimation, we assumed that the forms for the underlying probability
densities were known, and used the training samples to estimate the values of their
parameters.

� Instead, assume that the proper forms for the discriminant functions is known, and
use the samples to estimate the values of parameters of the classifier.

� None of the various procedures for determining discriminant functions require
knowledge of the forms of underlying probability distributions so called
nonparametric approach.

� Linear discriminant functions are relatively easy to compute and estimate the form
using training samples.
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Linear discriminant functions and decisions surfaces

� A discriminant function is a linear combination of the components of x can be
written as

g(x) = wTx + w0

where w is the weight vector and w0 the bias or threshold weight.

� The equation g(x) = 0 defines the decision surface that separates points from
different classes.

� Linear discriminant functions are going to be studied for
� two-category case,
� multi-category case, and
� general case

For the general case there will be c such discriminant functions, one for each of c
categories.
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Two-Category Case

� A two-category classifier with a discriminant function of the form g(x) = wTx + w0

uses the following rule:

Decide

{
ω1 if g(x) > 0
ω2 otherwise

� Thus, x is assigned to ω1 if the inner product wTx exceeds the threshold −w0 and
to ω2 otherwise.

� If g(x) = 0, x can ordinarily be assigned to either class, or can be left undefined.
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A simple linear classifier

4 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

and computational complexities of various gradient descent procedures for minimizing
criterion functions. The similarities between many of the procedures sometimes makes
it difficult to keep the differences between them clear and for this reason we have
included a summary of the principal results in Table 5.1 at the end of Sect. 5.10.

5.2 Linear Discriminant Functions and Decision Sur-
faces

5.2.1 The Two-Category Case

A discriminant function that is a linear combination of the components of x can be
written as

g(x) = wtx + w0, (1)

where w is the weight vector and w0 the bias or threshold weight. A two-categorythreshold
weight linear classifier implements the following decision rule: Decide ω1 if g(x) > 0 and ω2

if g(x) < 0. Thus, x is assigned to ω1 if the inner product wtx exceeds the threshold
−w0 and ω2 otherwise. If g(x) = 0, x can ordinarily be assigned to either class, but
in this chapter we shall leave the assignment undefined. Figure 5.1 shows a typical
implementation, a clear example of the general structure of a pattern recognition
system we saw in Chap. ??.
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w1 
wd 
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Figure 5.1: A simple linear classifier having d input units, each corresponding to the
values of the components of an input vector. Each input feature value xi is multiplied
by its corresponding weight wi; the output unit sums all these products and emits a
+1 if wtx + w0 > 0 or a −1 otherwise.

The equation g(x) = 0 defines the decision surface that separates points assigned
to ω1 from points assigned to ω2. When g(x) is linear, this decision surface is a
hyperplane. If x1 and x2 are both on the decision surface, then

wtx1 + w0 = wtx2 + w0

or

wt(x1 − x2) = 0,

Figure: A simple linear classifier having d input units, each corresponding to the values of the components of an
input vector. Each input feature value xi is multiplied by its corresponding weight wi; the output unit sums all
these products and emits +1 if wT x + w0 > 0 or −1 otherwise
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Two-Category Case

� The equation g(x) = 0 defines the decision surface that separates points assigned to
the category ω1 from points assigned to the category ω2

� When g(x) is linear, the decision surface is a hyperplane.

� If x1 and x2 are both on the decision surface, then

wTx1 + w0 = wTx2 + w0

⇒ wT (x1 − x2) = 0

� This shows that w is normal to any vector lying in the hyperplane.
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ŵ 

x

x
𝑛

w

x1

x2

6/40 Kundan Kumar Pattern Classification



Linear Discriminant Functions Two-category Multi-category Generalized LDF Linearly separable case Perceptron Criteria References

Two-Category Case

� The discriminant function g(x) gives an algebraic measure of the distance from x to
the hyperplane. The easiest way to see this is to express x as

x = xp + r
w

‖w‖

� where xp is the normal projection of x onto H,
and r is the desired algebraic distance which is
positive if x is on the positive side and negative
if x is on the negative side.

� Because, g(xp) = 0

r =
g(x)

‖w‖

5.2. LINEAR DISCRIMINANT FUNCTIONS AND DECISION SURFACES 5

and this shows that w is normal to any vector lying in the hyperplane. In general,
the hyperplane H divides the feature space into two halfspaces, decision region R1

for ω1 and region R2 for ω2. Since g(x) > 0 if x is in R1, it follows that the normal
vector w points into R1. It is sometimes said that any x in R1 is on the positive side
of H, and any x in R2 is on the negative side.

The discriminant function g(x) gives an algebraic measure of the distance from x
to the hyperplane. Perhaps the easiest way to see this is to express x as

x = xp + r
w

‖w‖ ,

where xp is the normal projection of x onto H, and r is the desired algebraic distance
— positive if x is on the positive side and negative if x is on the negative side. Then,
since g(xp) = 0,

g(x) = wtx + w0 = r‖w‖,

or

r =
g(x)

‖w‖ .

In particular, the distance from the origin to H is given by w0/‖w‖. If w0 > 0 the
origin is on the positive side of H, and if w0 < 0 it is on the negative side. If w0 = 0,
then g(x) has the homogeneous form wtx, and the hyperplane passes through the
origin. A geometric illustration of these algebraic results is given in Fig. 5.2.
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Figure 5.2: The linear decision boundary H, where g(x) = wtx + w0 = 0, separates
the feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0).

To summarize, a linear discriminant function divides the feature space by a hy-
perplane decision surface. The orientation of the surface is determined by the normal
vector w, and the location of the surface is determined by the bias w0. The discrim-
inant function g(x) is proportional to the signed distance from x to the hyperplane,
with g(x) > 0 when x is on the positive side, and g(x) < 0 when x is on the negative
side.
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Two-Category Case

� The distance from the origin to
H is given by w0

||w|| .

� If w0 > 0, the origin is on the
positive side of H, and if w0 < 0,
it is on the negative side.

� If w0 = 0, then g(x) has the
homogeneous form wTx, and the
hyperplane passes through the
origin.

5.2. LINEAR DISCRIMINANT FUNCTIONS AND DECISION SURFACES 5
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Figure 5.2: The linear decision boundary H, where g(x) = wtx + w0 = 0, separates
the feature space into two half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0).

To summarize, a linear discriminant function divides the feature space by a hy-
perplane decision surface. The orientation of the surface is determined by the normal
vector w, and the location of the surface is determined by the bias w0. The discrim-
inant function g(x) is proportional to the signed distance from x to the hyperplane,
with g(x) > 0 when x is on the positive side, and g(x) < 0 when x is on the negative
side.

Figure: The linear decision boundary H, where
g(x) = wT x + w0, separates the feature space into two
half-spaces R1 (where g(x) > 0) and R2 (where g(x) < 0))
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Two-Category Case

� In conclusion, a linear discriminant function divides the feature space by a
hyperplane decision surface.

� The orientation of the surface is determined by the normal vector w and the
location of the surface is determined by the bias w0.

� The discriminant function g(x) is proportional to the signed distance from x to the
hyperplane, with g(x) > 0 when x is on the positive side, and g(x) < 0 when x is
on the negative side.
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Multi-category case

� There is more than one way to devise multi-category classifiers employing linear
discriminant functions.

� c two-class problem
(one-vs-rest)

5.3. GENERALIZED LINEAR DISCRIMINANT FUNCTIONS 7
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Figure 5.3: Linear decision boundaries for a four-class problem. The top figure shows
ωi/not ωi dichotomies while the bottom figure shows ωi/ωj dichotomies. The pink
regions have ambiguous category assigments.

Since xixj = xjxi, we can assume that wij = wji with no loss in generality. Thus, the
quadratic discriminant function has an additional d(d+1)/2 coefficients at its disposal
with which to produce more complicated separating surfaces. The separating surface
defined by g(x) = 0 is a second-degree or hyperquadric surface. The linear terms
in g(x) can be eliminated by translating the axes. We can define W = [wij ], a
symmetric, nonsingular matrix and then the basic character of the separating surface
can be described in terms of the scaled matrix W̄ = W/(wtW−1w − 4w0). If W̄
is a positive multiple of the identity matrix, the separating surface is a hypersphere.
If W̄ is positive definite, the separating surfaces is a hyperellipsoid. If some of the
eigenvalues of W̄ are positive and others are negative, the surface is one of the variety
of types of hyperhyperboloids (Problem 11). As we observed in Chap. ??, these are
the kinds of separating surfaces that arise in the general multivariate Gaussian case.

By continuing to add terms such as wijkxixjxk we can obtain the class of polyno-
mial discriminant functions. These can be thought of as truncated series expansions polynomial

discriminantof some arbitrary g(x), and this in turn suggest the generalized linear discriminant
function

g(x) =
d̂∑

i=1

aiyi(x) (5)

� c(c− 1)/2 linear
discriminants, one for every
pair of classes (one-vs-one).
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Since xixj = xjxi, we can assume that wij = wji with no loss in generality. Thus, the
quadratic discriminant function has an additional d(d+1)/2 coefficients at its disposal
with which to produce more complicated separating surfaces. The separating surface
defined by g(x) = 0 is a second-degree or hyperquadric surface. The linear terms
in g(x) can be eliminated by translating the axes. We can define W = [wij ], a
symmetric, nonsingular matrix and then the basic character of the separating surface
can be described in terms of the scaled matrix W̄ = W/(wtW−1w − 4w0). If W̄
is a positive multiple of the identity matrix, the separating surface is a hypersphere.
If W̄ is positive definite, the separating surfaces is a hyperellipsoid. If some of the
eigenvalues of W̄ are positive and others are negative, the surface is one of the variety
of types of hyperhyperboloids (Problem 11). As we observed in Chap. ??, these are
the kinds of separating surfaces that arise in the general multivariate Gaussian case.

By continuing to add terms such as wijkxixjxk we can obtain the class of polyno-
mial discriminant functions. These can be thought of as truncated series expansions polynomial

discriminantof some arbitrary g(x), and this in turn suggest the generalized linear discriminant
function

g(x) =
d̂∑

i=1

aiyi(x) (5)

� Pink regions have ambiguous category assignment.
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Multi-category case

� More effective way is to define c linear discriminant functions

gi(x) = wT
i x + wi0 i = 1, 2, . . . , c

and assign x to ωi if gi(x) > gj(x) for all j 6= i; in case of ties, the classification is
undefined

� In this case, resulting classifier is a “linear machine”.

� A linear machine divides the feature space into c decision regions, with gi(x) being
the largest discriminant if x is in the region Ri.

� For a two contiguous regions Ri and Rj ; the boundary that separates them is a
portion of hyperplane Hij defined by:

gi(x) = gj(x) or (wi − wj)
Tx + (wi0 − wj0) = 0
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Multi-category case

� It follows at once that wi − wj is normal to Hij , and the signed distance from x to
Hij is given by

r =
(gi(x)− gj(x))

‖wi − wj‖8 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS
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Figure 5.4: Decision boundaries produced by a linear machine for a three-class prob-
lem and a five-class problem.

or

g(x) = aty, (6)

where a is now a d̂-dimensional weight vector, and where the d̂ functions yi(x) — some-
times called ϕ functions — can be arbitrary functions of x. Such functions might bephi

function computed by a feature detecting subsystem. By selecting these functions judiciously
and letting d̂ be sufficiently large, one can approximate any desired discriminant func-
tion by such an expansion. The resulting discriminant function is not linear in x, but
it is linear in y. The d̂ functions yi(x) merely map points in d-dimenional x-space

to points in d̂-dimensional y-space. The homogeneous discriminant aty separates
points in this transformed space by a hyperplane passing through the origin. Thus,
the mapping from x to y reduces the problem to one of finding a homogeneous linear
discriminant function.

Some of the advantages and disadvantages of this approach can be clarified by
considering a simple example. Let the quadratic discriminant function be

g(x) = a1 + a2x + a3x
2, (7)

so that the three-dimensional vector y is given by

y =




1
x
x2


 . (8)

The mapping from x to y is illustrated in Fig. 5.5. The data remain inherently one-
dimensional, since varying x causes y to trace out a curve in three dimensions. Thus,
one thing to notice immediately is that if x is governed by a probability law p(x), the
induced density p̂(y) will be degenerate, being zero everywhere except on the curve,

where it is infinite. This is a common problem whenever d̂ > d, and the mapping
takes points from a lower-dimensional space to a higher-dimensional space.

The plane Ĥ defined by aty = 0 divides the y-space into two decision regions R̂1

and R̂2. Figure ?? shows the separating plane corresponding to a = (−1, 1, 2)t, the
decision regions R̂1 and R̂2, and their corresponding decision regions R1 and R2 in
the original x-space. The quadratic discriminant function g(x) = −1 + x + 2x2 is

Figure: Decision boundaries produced by a linear machine for a three-class problem and a five-class problem
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The Two-Category Case

� For the two-category case, the decision rule can be written as

Decide

{
ω1 if g(x) > 0
ω2 otherwise

� The equation g(x) = 0 defines the decision boundary that separates points assigned
to ω1 from points assigned to ω2.

� When g(x) is linear, the decision surface is a hyperplane whose orientation is
determined by the normal vector w and location is determined by the bias w0.
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Generalized Linear Discriminant Functions
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Generalized Linear Discriminant Functions

� The linear discriminant function g(x) is defined as

g(x) = wTx + w0 (1)

= w0 +

d∑

i=1

wixi (2)

where w = [w1, . . . , wd]T , and x = [x1, x2, . . . , xd]T

� We can obtain the quadratic discriminant function by adding second-order terms as

g(x) = w0 +

d∑

i=1

wixi +

d∑

i=1

d∑

j=1

wijxixj (3)

Because xixj = xjxi, we can assume that wij = wji with no loss in generality.
Which result in more complicated decision boundaries. (hyperquadrics)
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Generalized Linear Discriminant Functions

� The quadratic discriminant function has an additional d(d+ 1)/2 coefficients at its
disposal with which to produce more complicated separating surfaces.

� The separating surface defined by g(x) = 0 is a second-degree or hyperquadric
surface.

� If the symmetric matrix, W = [wij ], is nonsingular, the linear term in g(x) can be
eliminated by translating the axes.
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Generalized Linear Discriminant Functions

� The basic character of the separating surface can be described in terms of scaled
matrix

W̄ =
W

wTW−1w − 4w0

where w = (w1, . . . , wd)T and W = [wij ]
� The types of quadratic separating surfaces that arise in the general multivariate

Gaussian case are as follows

1. If W̄ is a positive multiple of the identity matrix, the separating surface is a hypersphere
such that W̄ = kI.

2. If W̄ is positive definite, the separating surfaces is a hyperellipsoid whose axes are in the
direction of the eigenvectors of W̄.

3. If none of the above cases holds, that is, some of the eigenvalues of are positive and
others are negative, the surface is one of the varieties of types of hyperhyperboloids.
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Generalized Linear Discriminant Functions

� By continuing to add terms such as wijkxixjxk, we can obtain the class of
polynomial discriminant functions. These can be thought of as truncated series
expansions of some arbitrary g(x), and this in turn suggest the generalized linear
discriminant function.

g(x) =

d̂∑

i=1

aiyi(x) = aTy

where a is a d̂−dimensional weight vector and d̂ functions yi(x) are arbitrary
functions of x.

� The physical interpretation is that the functions yi(x) map points x from
d-dimensional space to point y in d̂-dimensional space.

� The resulting discriminant function is not linear in x, but it is linear in y.
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Generalized Linear Discriminant Functions

� Then, the discriminant g(x) = aTy separates points in the transformed space using
a hyperplane passing through the origin.

� The mapping to a higher dimensional space may increase the complexity of the
learning algorithms.

� However, certain assumptions can make the problem tractable.

� Let the quadratic discriminant function be

g(x) = a1 + a2x + a3x
2

� So that the three-dimensional vector y is given by

y = [1 x x2]T
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Generalized Linear Discriminant Functions

5.3. GENERALIZED LINEAR DISCRIMINANT FUNCTIONS 9
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Figure 5.5: The mapping y = (1, x, x2)t takes a line and transforms it to a parabola
in three dimensions. A plane splits the resulting y space into regions corresponding
to two categories, and this in turn gives a non-simply connected decision region in the
one-dimensional x space.

positive if x < −1 or if x > 0.5, and thus R1 is multiply connected. Thus although
the decision regions in y-space are convex, this is by no means the case in x-space.
More generally speaking, even with relatively simple functions yi(x), decision surfaces
induced in an x-space can be fairly complex (Fig. 5.6).

Unfortunately, the curse of dimensionality often makes it hard to capitalize on
this flexibility in practice. A complete quadratic discriminant function involves d̂ =
(d + 1)(d + 2)/2 terms. If d is modestly large, say d = 50, this requires the com-

putation of a great many terms; inclusion of cubic and higher orders leads to O(d̂3)

terms. Furthermore, the d̂ components of the weight vector a must be determined
from training samples. If we think of d̂ as specifying the number of degrees of freedom
for the discriminant function, it is natural to require that the number of samples be
not less than the number of degrees of freedom (cf., Chap. ??). Clearly, a general
series expansion of g(x) can easily lead to completely unrealistic requirements for
computation and data. We shall see in Sect. ?? that this drawback can be accom-
modated by imposing a constraint of large margins, or bands between the training
patterns, however. In this case, we are not technically speaking fitting all the free
parameters; instead, we are relying on the assumption that the mapping to a high-
dimensional space does not impose any spurious structure or relationships among the
training points. Alternatively, multilayer neural networks approach this problem by
employing multiple copies of a single nonlinear function of the input features, as we
shall see in Chap. ??.

While it may be hard to realize the potential benefits of a generalized linear dis-
criminant function, we can at least exploit the convenience of being able to write
g(x) in the homogeneous form aty. In the particular case of the linear discriminant
function

Figure: The mapping y = (1 x x2)T takes a line and transforms it to a parabola in three dimensions. A plane
splits the resulting y space into regions corresponding to two categories, and this in turn gives a non-simply
connected decision region in the one-dimensional x space.
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Generalized Linear Discriminant Functions
10 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS
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Figure 5.6: The two-dimensional input space x is mapped through a polynomial
function f to y. Here the mapping is y1 = x1, y2 = x2 and y3 ∝ x1x2. A linear
discriminant in this transformed space is a hyperplane, which cuts the surface. Points
to the positive side of the hyperplane Ĥ correspond to category ω1, and those beneath
it ω2. Here, in terms of the x space, R1 is a not simply connected.

g(x) = w0 +
d∑

i=1

wixi =
d∑

i=0

wixi (9)

where we set x0 = 1. Thus we can write

y =




1
x1

...
xd


 =




1

x


 , (10)

and y is sometimes called an augmented feature vector. Likewise, an augmented weightaugmented
vector vector can be written as:

a =




w0

w1

...
wd


 =




w0

w


 . (11)

This mapping from d-dimensional x-space to (d+1)-dimensional y-space is mathe-
matically trivial but nonetheless quite convenient. The addition of a constant compo-
nent to x preserves all distance relationships among samples. The resulting y vectors
all lie in a d-dimensional subspace, which is the x-space itself. The hyperplane deci-
sion surface Ĥ defined by aty = 0 passes through the origin in y-space, even though
the corresponding hyperplane H can be in any position in x-space. The distance from
y to Ĥ is given by |aty|/‖a‖, or |g(x)|/‖a‖. Since ‖a‖ > ‖w‖, this distance is less

Figure: The two-dimensional input space x is mapped through a polynomial function f to y. Here the mapping
is y1 = x1 , y2 = x2 and y3 ∝ x1x2 . A linear discriminant in this transformed space is a hyperplane, which cuts
the surface. Points to the positive side of the hyperplane Ĥ correspond to category ω1 , and those beneath it
ω2. Here, in terms of the x space, R1 is a not simply connected.
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Problem to be solved

Question:
The following three decision functions are given for a three-class problem.

g1(x) = 10x1 − x2 − 10 = 0

g2(x) = x1 + 2x2 − 10 = 0

g3(x) = x1 − 2x2 − 10 = 0

i. Sketch the decision boundary and regions for each pattern class.

ii. Assuming that each pattern class is pairwise linearly separable from every other class by a
distinct decision surface and letting

g12(x) = g1(x)

g13(x) = g2(x)

g23(x) = g3(x)

as listed above, sketch the decision boundary and regions for each pattern class.
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Two-category linearly separable case
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2-category linearly separable case

� Suppose, we have a set of n samples y1, . . . , yn some labeled ω1 and some labeled
ω2.

� Note that all samples are augmented feature vectors.

� We want to use these samples to determine the weights a in a linear discriminant
function g(x) = aTy.

� If such a exists that
� aT yi > 0 for all yi belonging to ω1, and
� aT yi < 0 for all yi belonging to ω2

samples y1, . . . , yn are called linearly separable.

� Then, it is reasonable to try to find such a that all the training samples are
classified correctly.
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2-category linearly separable case

� Normalize the samples y1, . . . , yn: replace all yi labeled ω2 by their negatives.

12 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

of every hyperplane. Thus, a solution vector must lie in the intersection of n half-
spaces; indeed any vector in this region is a solution vector. The corresponding region
is called the solution region, and should not be confused with the decision region insolution

region feature space corresponding to any particular category. A two-dimensional example
illustrating the solution region for both the normalized and the unnormalized case is
shown in Fig. 5.8.

y1

y2

separating plane

solution 
region

y1

y2

"separating" plane

solution 
region

aa

Figure 5.8: Four training samples (black for ω1, red for ω2) and the solution region
in feature space. The figure on the left shows the raw data; the solution vectors leads
to a plane that separates the patterns from the two categories. In the figure on the
right, the red points have been “normalized” — i.e., changed in sign. Now the solution
vector leads to a plane that places all “normalized” points on the same side.

From this discussion, it should be clear that the solution vector — again, if it
exists — is not unique. There are several ways to impose additional requirements to
constrain the solution vector. One possibility is to seek a unit-length weight vector
that maximizes the minimum distance from the samples to the separating plane.
Another possibility is to seek the minimum-length weight vector satisfying atyi ≥ b
for all i, where b is a positive constant called the margin. As shown in Fig. 5.9, themargin
solution region resulting form the intersections of the halfspaces for which atyi ≥ b > 0
lies within the previous solution region, being insultated from the old boundaries by
the distance b/‖yi‖.

The motivation behind these attempts to find a solution vector closer to the “mid-
dle” of the solution region is the natural belief that the resulting solution is more likely
to classify new test samples correctly. In most of the cases we shall treat, however,
we shall be satisfied with any solution strictly within the solution region. Our chief
concern will be to see that any iterative procedure used does not converge to a limit
point on the boundary. This problem can always be avoided by the introduction of a
margin, i.e., by requiring that atyi ≥ b > 0 for all i.

5.4.2 Gradient Descent Procedures

The approach we shall take to finding a solution to the set of linear inequalities
atyi > 0 will be to define a criterion function J(a) that is minimized if a is a solution
vector. This reduces our problem to one of minimizing a scalar function — a problem
that can often be solved by a gradient descent procedure. Basic gradient descent is
very simple. We start with some arbitrarily chosen weight vector a(1) and compute
the gradient vector ∇J(a(1)). The next value a(2) is obtained by moving some

� With this normalized set of training samples, we can forget about labels and look
for the weight vector a that satisfies

aTyi > 0 for all yi.

� Such a is called a solution vector.
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Solution regions

� A solution vector - if exists - is not unique. The set of possible solution vectors,
that are interpreted as points in <d, is called the solution region.

� More formally the solution region is the set

{
a | aTyi > 0; for all i = 1, . . . , n

}

� There are several ways to impose additional requirements to constrain the solution
vector.

� One possibility is to seek a unit-length weight vector that maximizes the minimum
distance from the samples to the separating plane.
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Solution regions

� Another possibility is to seek the minimum-length weight vector satisfying

aTyi ≥ b, ∀ i = 1, . . . , n

where, b is a positive constant, called the margin.

solution
region

y1

y2

y3

a1

a2

solution
region

a2

a1

y1

y2

y3

b/||y
2 ||

b/||y 1
||

b/
||y

3
||

}

}

}

Figure 5.9: The effect of the margin on the solution region. At the left, the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the
right is the case b > 0, shrinking the solution region by margins b/‖yi‖.

distance from a(1) in the direction of steepest descent, i.e., along the negative of the
gradient. In general, a(k + 1) is obtained from a(k) by the equation

a(k + 1) = a(k)− η(k)∇J(a(k)), (12)

where η is a positive scale factor or learning rate that sets the step size. We hope learning
ratethat such a sequence of weight vectors will converge to a solution minimizing J(a).

In algorithmic form we have:

Algorithm 1 (Basic gradient descent)

1 begin initialize a, criterion θ, η(·), k = 0
2 do k ← k + 1
3 a← a− η(k)∇J(a)
4 until η(k)∇J(a) < θ
5 return a
6 end

The many problems associated with gradient descent procedures are well known.
Fortunately, we shall be constructing the functions we want to minimize, and shall be
able to avoid the most serious of these problems. One that will confront us repeatedly,
however, is the choice of the learning rate η(k). If η(k) is too small, convergence is
needlessly slow, whereas if η(k) is too large, the correction process will overshoot and
can even diverge (Sect. 5.6.1).

We now consider a principled method for setting the learning rate. Suppose that
the criterion function can be well approximated by the second-order expansion around
a value a(k) as

J(a) 
 J(a(k)) + ∇J t(a− a(k)) +
1

2
(a− a(k))tH (a− a(k)), (13)

where H is the Hessian matrix of second partial derivatives ∂2J/∂ai∂aj evaluated at Hessian
matrixa(k). Then, substituting a(k + 1) from Eq. 12 into Eq. 13 we find:
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Solving inequalities

� To find a solution to the set of linear inequalities

aTyi > 0

we define a criterion function J(a) that is minimized if a is a solution.

� This kind of problem can be solved by gradient descent.

� The idea is very simple: Start with some vector a(1). Generate then a(2) by taking
a small step in the direction of −∇J(a(1)) and so on.

� Explanation: −∇J(a(k)) is the direction of the steepest descent.

� In general, a(k + 1) is obtained from a(k) by the equation

a(k + 1) = a(k)− η(k)∇J(a(k)),

where η is a positive scale factor or learning rate that sets the step size.
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Basic gradient descent algorithm

5.4. THE TWO-CATEGORY LINEARLY-SEPARABLE CASE 13
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Figure 5.9: The effect of the margin on the solution region. At the left, the case of
no margin (b = 0) equivalent to a case such as shown at the left in Fig. 5.8. At the
right is the case b > 0, shrinking the solution region by margins b/‖yi‖.

distance from a(1) in the direction of steepest descent, i.e., along the negative of the
gradient. In general, a(k + 1) is obtained from a(k) by the equation

a(k + 1) = a(k)− η(k)∇J(a(k)), (12)

where η is a positive scale factor or learning rate that sets the step size. We hope learning
ratethat such a sequence of weight vectors will converge to a solution minimizing J(a).

In algorithmic form we have:

Algorithm 1 (Basic gradient descent)

1 begin initialize a, criterion θ, η(·), k = 0
2 do k ← k + 1
3 a← a− η(k)∇J(a)
4 until η(k)∇J(a) < θ
5 return a
6 end

The many problems associated with gradient descent procedures are well known.
Fortunately, we shall be constructing the functions we want to minimize, and shall be
able to avoid the most serious of these problems. One that will confront us repeatedly,
however, is the choice of the learning rate η(k). If η(k) is too small, convergence is
needlessly slow, whereas if η(k) is too large, the correction process will overshoot and
can even diverge (Sect. 5.6.1).

We now consider a principled method for setting the learning rate. Suppose that
the criterion function can be well approximated by the second-order expansion around
a value a(k) as

J(a) 
 J(a(k)) + ∇J t(a− a(k)) +
1

2
(a− a(k))tH (a− a(k)), (13)

where H is the Hessian matrix of second partial derivatives ∂2J/∂ai∂aj evaluated at Hessian
matrixa(k). Then, substituting a(k + 1) from Eq. 12 into Eq. 13 we find:

� The learning rate can be set

η(k) =
‖∇J(a(k))‖2

∇J(a(k))TH∇J(a(k))

where H is the Hessian at a(k).
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Newtons algorithm

14 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

J(a(k + 1)) 
 J(a(k))− η(k)‖∇J‖2 +
1

2
η2(k)∇J tH∇J.

From this it follows (Problem 12) that J(a(k + 1)) can be minimized by the choice

η(k) =
‖∇J‖2

∇J tH∇J
, (14)

where H depends on a, and thus indirectly on k. This then is the optimal choice
of η(k) given the assumptions mentioned. Note that if the criterion function J(a) is
quadratic throughout the region of interest, then H is constant and η is a constant
independent of k.

An alternative approach, obtained by ignoring Eq. 12 and by choosing a(k +
1) to minimize the second-order expansion, is Newton’s algorithm where line 3 inNewton’s

algorithm Algorithm 1 is replaced by

a(k + 1) = a(k)−H−1∇J, (15)

leading to the following algorithm:

Algorithm 2 (Newton descent)

1 begin initialize a, criterion θ
2 do
3 a← a−H−1∇J(a)
4 until H−1∇J(a) < θ
5 return a
6 end

Simple gradient descent and Newton’s algorithm are compared in Fig. 5.10.
Generally speaking, Newton’s algorithm will usually give a greater improvement

per step than the simple gradient descent algorithm, even with the optimal value
of η(k). However, Newton’s algorithm is not applicable if the Hessian matrix H is
singular. Furthermore, even when H is nonsingular, the O(d3) time required for
matrix inversion on each iteration can easily offset the descent advantage. In fact,
it often takes less time to set η(k) to a constant η that is smaller than necessary
and make a few more corrections than it is to compute the optimal η(k) at each step
(Computer exercise 1).

5.5 Minimizing the Perceptron Criterion Function

5.5.1 The Perceptron Criterion Function

Consider now the problem of constructing a criterion function for solving the linear
inequalities atyi > 0. The most obvious choice is to let J(a; y1, ...,yn) be the number
of samples misclassified by a. However, because this function is piecewise constant, it
is obviously a poor candidate for a gradient search. A better choice is the Perceptron
criterion function

Jp(a) =
∑

y∈Y
(−aty), (16)

Gradients, Jacobians, Hessians

The Jacobian (matrix) of h : Rd → Rm is defined as

B(x) =




∂h1

∂x1
· · · ∂h1

∂xd
... . . . ...

∂hm

∂x1
· · · ∂hm

∂xd


 .

8001652 Introduction to Pattern Recognition. Lectures 9 and 10: Linear discriminant functions – p.25/38

Gradients, Jacobians, Hessians

The Hessian (matrix) of f : Rd → R is defined as the
Jacobian of ∇f :

H(x) =




∂f
∂x1∂x1

· · · ∂f
∂x1∂xd

... . . . ...
∂f

∂xd∂x1
· · · ∂f

∂xd∂xd


 .

8001652 Introduction to Pattern Recognition. Lectures 9 and 10: Linear discriminant functions – p.26/38

Solving inequalities

To find a solution to the set of linear inequalities

aTyi > 0,

we define a criterion function J(a) that is minimized if a
is a solution.

This kind of problem can be solved by gradient descent.
The idea is very simple: Start with some vector a(1).
Generate then a(2) by taking a small step in the
direction of −∇J(a(1)) and so on.

Explanation: −∇J(a(k)) is the direction of the steepest
descent.

8001652 Introduction to Pattern Recognition. Lectures 9 and 10: Linear discriminant functions – p.27/38

Basic gradient descent

1. Initialize: a(1), threshold θ, learning rate η(k), and set
k ← 0.

2. k ← k + 1

3. a(k + 1) = a(k)− η(k)∇J(a(k(1))

4. If |η(k)∇J(a(k))| < θ stop and return a(k), otherwise go
to step 2.

8001652 Introduction to Pattern Recognition. Lectures 9 and 10: Linear discriminant functions – p.28/38

� Another possibility is to set the learning rate to be a constant that is small enough.
This makes one iteration of the descent algorithm much faster, but the descent
takes with a constant learning rate more iterations. There is no general answer how
to set the learning rate optimally: The best selection depends on the application.
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Minimizing Perceptron Criterion Function
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Perceptron Criterion Function

� Consider now the problem of constructing a criterion function for solving the linear
inequalities. Assume that the margin b = 0.

� The most obvious choice would be the number of samples misclassified by a.
However, this criterion is a piece-wise constant function and a poor candidate for a
gradient search.

� The perceptron criterion function is defined by

Jp(a) =
∑

y∈Y
−aTy,

where Y is the set of samples misclassified by a, i.e. samples for which the inner
product with a is negative.
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Perceptron Criterion Function

� The gradient

∇Jp =
∑

y∈Y
−y,

� The update rule in gradient descent is

a(k + 1) = a(k) + η(k)
∑

y∈Yk

y

where Yk is the set of samples misclassified by a(k).
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Perceptron Algorithm

5.5. MINIMIZING THE PERCEPTRON CRITERION FUNCTION 15
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Figure 5.10: The sequence of weight vectors given by a simple gradient descent method
(red) and by Newton’s (second order) algorithm (black). Newton’s method typically
leads to greater improvement per step, even when using optimal learning rates for both
methods. However the added computational burden of inverting the Hessian matrix
used in Newton’s method is not always justified, and simple descent may suffice.

where Y(a) is the set of samples misclassified by a. (If no samples are misclassified,
Y is empty and we define Jp to be zero.) Since aty ≤ 0 if y is misclassified, Jp(a)
is never negative, being zero only if a is a solution vector, or if a is on the decision
boundary. Geometrically, Jp(a) is proportional to the sum of the distances from the
misclassified samples to the decision boundary. Figure 5.11 illustrates Jp for a simple
two-dimensional example.

Since the jth component of the gradient of Jp is ∂Jp/∂aj , we see from Eq. 16 that

∇Jp =
∑

y∈Y
(−y), (17)

and hence the update rule becomes

a(k + 1) = a(k) + η(k)
∑

y∈Yk

y, (18)

where Yk is the set of samples misclassified by a(k). Thus the Perceptron algorithm
is:

Algorithm 3 (Batch Perceptron)

1 begin initialize a, η(·), criterion θ, k = 0
2 do k ← k + 1
3 a← a + η(k)

∑
y∈Yk

y

4 until η(k)
∑

y∈Yk

y < θ

5 return a
6 end

� A good feature of the perceptron algorithm is that it will converge to a solution
vector if training samples are linearly separable and the learning rate satisfies certain
conditions.

� A bad feature of the perceptron algorithm is that it does not (necessarily) converge
if the training samples are not linearly separable.
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Other criterion functions

� Relaxation Criterion:

Jr(a) =
1

2

∑

y∈Y

(aTy − b)2

‖y‖2

where b is the margin and Y(a) is the set of samples for which aTy ≤ b.
� Sum-of-squared-error criterion:

Js(a) = ||Y a− b||2 =
n∑

i=1

(
aTyi − b

)2
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Minimum Squared-Error and the Pseudoinverse

� Let Y be the n× d̂ matrix (d̂ = d+ 1), whose ith row is the vector yT
i .

� Treat all linear equations simultaneously.

aTyi = b ∀i = 1, . . . , n

� Combining all linear equation in a matrix form




y10 y11 · · · y1d
y20 y21 · · · y2d

...
...

. . .
...

yn0 yn1 · · · ynd







a0
a1
...
ad


 =




b1
b2
...
bn




Y a = b
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Minimum Squared-Error and the Pseudoinverse
� We seek for a weight vector a that minimizes some function of the error between Y a and b.

e = Y a− b

� Sum-of-squared-error (SSE) criterion function:

Js(a) = ||Y a− b||2 =

n∑
i=1

(
aT yi − b

)2
� Minimizing the criterion function

∇Js =
n∑

i=1

2(aT yi − bi)yi = 2Y T (Y a− b) = 0

Y TY a = Y Tb

a = (Y TY )−1Y Tb

a = Y †b

� However, Y † is defined more generally by Y † ≡ lim
ε→0

(Y TY + εI)−1Y T
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Example

Question:
Suppose we have the following two-dimensional point for two categories: ω1: (1, 2)T

and (2, 0)T , and ω2: (3, 1)T and (2, 3)T . Construct a Linear Classifier by Matrix
Pseudoinverse. 30 CHAPTER 5. LINEAR DISCRIMINANT FUNCTIONS

0 1 2 3 4
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R1
R2

x1

x2

Four training points and the decision boundary at




1
x1

x2


 = 0, where a was found

by means of a pseudoinverse technique.

We arbitrarily let all the margins be equal, i.e., b = (1, 1, 1, 1)t. Our solution is
a = Y†b = (11/3,−4/3,−2/3)t, and leads to the decision boundary shown in the
figure. Other choices for b would typically lead to different decision boundaries, of
course.

5.8.2 Relation to Fisher’s Linear Discriminant

In this section we shall show that with the proper choice of the vector b, the MSE
discriminant function aty is directly related to Fisher’s linear discriminant. To do
this, we must return to the use of linear rather than generalized linear discriminant
functions. We assume that we have a set of n d-dimensional samples x1, ...,xn, n1 of
which are in the subset D1 labelled ω1, and n2 of which are in the subset D2 labelled
ω2. Further, we assume that a sample yi is formed from xi by adding a threshold
component x0 = 1 to make an augmented pattern vector. Further, if the sample isaugmented

pattern
vector

labelled ω2, then the entire pattern vector is multiplied by −1 — the “normlization”
we saw in Sect. 5.4.1. With no loss in generality, we can assume that the first n1

samples are labelled ω1 and the second n2 are labelled ω2. Then the matrix Y can
be partitioned as follows:

Y =

[
11 X1

−12 −X2

]
,

where 1i is a column vector of ni ones, and Xi is an ni-by-d matrix whose rows are
the samples labelled ωi. We partition a and b correspondingly, with

a =

[
w0

w

]

and with
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