[Dimensionality Problem](#page-1-0) [Component Analysis](#page-10-0) [PCA](#page-13-0) [LDA](#page-29-0) [Feature Selection](#page-46-0)

Pattern Classification EET3053 Lecture 05: Dimensionality Reduction

Dr. Kundan Kumar Associate Professor Department of ECE

Faculty of Engineering (ITER) S'O'A Deemed to be University, Bhubaneswar, India-751030 c 2021 Kundan Kumar, All Rights Reserved

- **Dimensionality Problem**
- Dimensionality/Feature reduction
	- \Box Principal component analysis
	- \Box Linear discriminant analysis
		- Fisher Linear discriminant
		- **Multiple Discriminant Analysis**
- **Feature Selection**

Dimensionality Problem

- In practical multicategory applications, it is not unusual to encounter problems involving tens or hundreds of features.
- Intuitively, it may seem that each feature is useful for at least some of the discriminations.
- In general, if the performance obtained with a given set of features is inadequate, it is natural to consider adding new features.
- Even though increasing the number of features increases the complexity of the classifier, it may be acceptable for an improved performance.

Figure: There is a non-zero Bayes error in the one-dimensional x_1 space or the two-dimensional x_1, x_2 space. $\frac{1}{100}$ the Bayes of the Bayes error vanishes. When $\frac{1}{100}$ are subspaced to a subspace $\frac{1}{100}$ and $\frac{1}{100}$ a However, the Bayes error vanishes in the x_1, x_2, x_3 space because of non-overlapping densities.

- Unfortunately, it has frequently been observed in practice that, beyond a certain point, adding new features leads to worse rather than better performance.
- This is called the *curse of dimensionality*.
- \blacksquare There are two issues that we must be careful about:
	- \Box How is the classification accuracy affected by the dimensionality (relative to the amount of training data)?
	- \Box How is the complexity of the classifier affected by the dimensionality?

Potential reasons for increase in error include

- \Box wrong assumptions in model selection,
- \Box estimation errors due to the finite number of training samples for high-dimensional observations (overfitting).

Potential solutions include

- \Box reducing the dimensionality,
- \Box simplifying the estimation.

Problems of Dimensionality

- Dimensionality can be reduced by
	- \Box redesigning the features,
	- \Box selecting an appropriate subset among the existing features,
	- \Box combining existing features.
- Estimation errors can be simplified by
	- \Box assuming equal covariance for all classes (for the Gaussian case),
	- \Box using regularization,
	- \Box using prior information and a Bayes estimate,
	- \Box using heuristics such as conditional independence,

 \square

Figure: The "training data" (black dots) were selected from a quadratic function plus Gaussian noise, i.e, $f(x) = ax^2 + bx + c + \varepsilon$ where $p(\varepsilon) \approx N(0, \sigma^2)$. The 10th degree polynomial shown fits the data perfectly, but we desire instead the second-order function $f(x)$, since it would lead to better predictions for few samples. function function $f(x)$, since it would lead to better predictions for $f(x)$

to be set.

- All of the commonly used classifiers can suffer from the curse of dimensionality.
- While an exact relationship between the probability of error, the number of training samples, the number of features, and the number of parameters is very difficult to establish, some guidelines have been suggested.
- \blacksquare It is generally accepted that using at least ten times as many training samples per class as the number of features $(n/d > 10)$ is a good practice.

Feature/Dimensionality Reduction

Component Analysis and Discriminants

- One way of coping with the problem of high dimensionality is to reduce the dimensionality by combining features.
- \blacksquare Issues in feature/dimensionality reduction:
	- \Box Linear vs. non-linear transformations.
	- \Box Use of class labels or not (depends on the availability of training data).
- **Linear combinations are particularly attractive because they are simple to compute** and are analytically tractable.
- **Linear methods project the high-dimensional data onto a lower dimensional space.**
- Advantages of these projections include
	- \Box reduced complexity in estimation and classification,
	- \Box ability to visually examine the multivariate data in two or three dimensions.

Component Analysis and Discriminants

■ Given $x \in \mathbb{R}^d$, the goal is to find a linear transformation A that gives $y = A^T x$, $y \in \mathbb{R}^{d'}$ where $d' < d$.

- Two classical approaches for finding optimal linear transformations are:
	- \Box Principal Components Analysis (PCA): Seeks a projection that best represents the data in a least-squares sense.
	- Multiple Discriminant Analysis (MDA): Seeks a projection that best separates the data in a least-squares sense.

Principal Component Analysis

- Given $x_1, x_2, ..., x_n \in \mathbb{R}^d$, the goal is to find a d' -dimensional subspace where the reconstruction error of x_i in this subspace is minimized.
- The squared-error criterion function $J_0(\mathbf{x}_0)$ by

$$
J_0(\mathbf{x}_0) = \sum_{k=1}^n ||\mathbf{x}_0 - \mathbf{x}_k||^2
$$

and seek the value of x_0 that minimizes J_0

It is simple to show that the solution to this problem is given by $x_0 = m$, where m is the sample mean.

$$
m = \frac{1}{n} \sum_{k=1}^{n} x_k
$$

Principal Component Analysis

■ This can be easily verified by writing

$$
J_0(\mathbf{x}_0) = \sum_{k=1}^n ||(\mathbf{x}_0 - \mathbf{m}) - (\mathbf{x}_k - \mathbf{m})||^2
$$

=
$$
\sum_{k=1}^n ||(\mathbf{x}_0 - \mathbf{m})||^2 - 2 \sum_{k=1}^n (\mathbf{x}_0 - \mathbf{m})^T (\mathbf{x}_k - \mathbf{m}) + \sum_{k=1}^n ||(\mathbf{x}_k - \mathbf{m})||^2
$$

=
$$
\sum_{k=1}^n ||(\mathbf{x}_0 - \mathbf{m})||^2 - 2(\mathbf{x}_0 - \mathbf{m})^T \sum_{k=1}^n (\mathbf{x}_k - \mathbf{m}) + \sum_{k=1}^n ||(\mathbf{x}_k - \mathbf{m})||^2
$$

=
$$
\sum_{k=1}^n ||(\mathbf{x}_0 - \mathbf{m})||^2 + \sum_{\substack{k=1 \text{ independent of } \mathbf{x}_0}}^n ||(\mathbf{x}_k - \mathbf{m})||^2
$$

Since the second sum is independent of x_0 , So the above expression is obviously minimized by the choice of $x_0 = m$.

- The sample mean is a zero-dimensional representation of the data set. It is simple, but it does not reveal any of the variability in the data.
- One-dimensional representation by projecting the data onto a line running through the sample mean.
- Let e be a unit vector in the direction of the line. Then equation of line will be

 $x = m + ae$

where a is any real value, corresponds to the distance of any point x form the mean m.

If $x_k = m + a_k e$, then we can find optimal set of coefficients a_k by minimizing the squared-error criterion function.

Principal Component Analysis

■ Squared-error criterion function

$$
J_1(a_1, a_2,..., a_n, e) = \sum_{k=1}^n ||(m + a_k e) - x_k||^2
$$

=
$$
\sum_{k=1}^n ||a_k e - (x_k - m)||^2
$$

=
$$
\sum_{k=1}^n a_k^2 ||e||^2 - 2 \sum_{k=1}^n a_k e^T (x_k - m) + \sum_{k=1}^n ||(x_k - m)||^2
$$

Recognize that $||e|| = 1$, partially differentiating with respect to a_k , and setting the derivative to zero, we obtain

$$
a_k = e^T(\mathbf{x}_k - \mathbf{m})
$$

Geometrically, this result merely says that we obtain a least-squares solution by projecting the vector x_k onto the line in the direction of e that passes through the sample mean.

Principal Component Analysis

 \blacksquare The solution to the problem involves the scatter matrix S defined by

$$
S = \sum_{k=1}^{n} (x_k - m)(x_k - m)^T
$$

- Scatter matrix is n times the sample covariance matrix.
- Substitute a_k in the cost function

$$
J_1(e) = \sum_{k=1}^{n} a_k^2 - 2\sum_{k=1}^{n} a_k^2 + \sum_{k=1}^{n} ||x_k - m||^2
$$

= $-\sum_{k=1}^{n} [e^T (x_k - m)]^2 + \sum_{k=1}^{n} ||x_k - m||^2$
= $-\sum_{k=1}^{n} e^T (x_k - m)(x_k - m)^T e + \sum_{k=1}^{n} ||x_k - m||^2$
= $-e^T 8e + \sum_{k=1}^{n} ||x_k - m||^2$

 \blacksquare So the resulting cost function

$$
J_1(e) = -e^T Se + \sum_{k=1}^{n} ||x_k - m||^2
$$

- \blacksquare Use Lagrange multipliers to maximize $\mathrm{e}^T\mathrm{Se}$ subject to the constraint that $\Vert \mathrm{e} \Vert = 1.$
- Letting λ be the undetermined multiplier, we differentiate

$$
u = e^{T}Se - \lambda(e^{T}e - 1)
$$

$$
\frac{\partial u}{\partial e} = 2Se - 2\lambda e
$$

$$
Se = \lambda e
$$

 \blacksquare In particular, because $\mathrm{e}^T\mathrm{Se}=\lambda\mathrm{e}^T\mathrm{e}=\lambda,$ it follows that to maximize $\mathrm{e}^T\mathrm{Se},$ so select the eigenvector corresponding to the largest eigenvalue of the scatter matrix.

- To find the best one-dimensional projection of the data (best in the least-sum-of-squared-error sense), we project the data onto a line through the sample mean in the direction of the eigenvector of the scatter matrix having the largest eigenvalue.
- \blacksquare This result can be readily extended from 1-D to a d' -D projection.

$$
x = m + \sum_{i=1}^{d'} a_i e_i
$$

where $d' \leq d$.

 \blacksquare It is not difficult to show that the criterion function

$$
J_{d'} = \sum_{k=1}^{n} \left\| \left(m + \sum_{i=1}^{d'} a_{ki} e_i \right) - x_k \right\|^2
$$

is minimized when the vector $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_{d'}$ are the d' eigenvector of the scatter matrix having the largest eigenvalues.

- Because the scatter matrix is real and symmetric, these eigenvectors are orthogonal.
- \blacksquare The coefficients a_i are the components of x in that basis, and are the principal components.

Principal Component Analysis

- Given $x_1, x_2, ..., x_n \in \mathbb{R}^d$, the goal is to find a d' -dimensional subspace where the reconstruction error of x_i in this subspace is minimized.
- The squared error criterion function $J_0(x_0)$ can be minimized by selecting $x_0 = m$, where m is the sample mean.
- \blacksquare The sample mean is a zero-dimensional representation of the data set. It is simple, but it does not reveal any of the variability in the data.
- We must consider at least one-dimensional representation of data by choosing

 $x = m + ae$

and compute the optimal value of α such that the squared error criterion function J_1 is minimum.

■ We obtained the solution as

$$
a_k = e^T(\mathbf{x}_k - \mathbf{m})
$$

- Given $x_1, x_2, ..., x_n \in \mathbb{R}^d$, the goal is to find a d' -dimensional subspace where the reconstruction error of x_i in this subspace is minimized.
- **The criterion function for the reconstruction error can be defined in the least** squares sense as

$$
J_{d'} = \sum_{k=1}^{n} \left\| \left(m + \sum_{i=1}^{d'} a_{ki} e_i \right) - x_k \right\|^2
$$

where $\mathrm{e}_1, \mathrm{e}_2, \ldots, \mathrm{e}_{d'}$ are the bases for the subspace (stored as the columns of A) and a_i is the projection of x_i onto that subspace.

 \blacksquare It can be shown that $J_{d'}$ is minimized when $\mathrm{e}_1, \mathrm{e}_2, \ldots, \mathrm{e}_{d'}$ are eigenvectors corresponding to first d' largest eigenvalues of scatter matrix.

$$
S = \sum_{k=1}^{n} (x_k - m)(x_k - m)^T
$$

- \blacksquare The coefficients $a=(a_i,\ldots,a_{d'})^T$ are called the principal components.
- When the eigenvectors are sorted in descending order of the corresponding eigenvalues, the greatest variance of the data lies on the first principal component, the second greatest variance on the second component, and so on.

Question: Given the following sets of feature vector belonging to two classes ω_1 and ω_2 which is Gaussian distributed.

$$
\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 5 \end{pmatrix}, \begin{pmatrix} 7 \\ 5 \end{pmatrix} \right\} \in \omega_1
$$

$$
\left\{ \begin{pmatrix} 6 \\ 2 \end{pmatrix}, \begin{pmatrix} 9 \\ 4 \end{pmatrix}, \begin{pmatrix} 7 \\ 3 \end{pmatrix}, \begin{pmatrix} 11 \\ 4 \end{pmatrix}, \begin{pmatrix} 13 \\ 6 \end{pmatrix} \right\} \in \omega_2
$$

Find out the best direction of the line of projection that best represent the data in one-dimensional feature space. 8

[Dimensionality Problem](#page-1-0) [Component Analysis](#page-10-0) [PCA](#page-13-0) [LDA](#page-29-0) [Feature Selection](#page-46-0)

Examples: Iris dataset representation

- "Iris" dataset is very famous dataset used for data analysis problems (classification, feature reduction, and many more)
- Available on the UCI machine learning repository <https://archive.ics.uci.edu/ml/datasets/Iris>.
- The iris dataset contains measurements for 150 iris flowers from three different species.
	- \Box Iris-setosa ($n_1 = 50$)
	- \Box Iris-versicolor ($n_2 = 50$)
	- \Box Iris-virginica ($n_3 = 50$)
- And the four features of in Iris dataset are:
	- \Box sepal length in cm
	- \Box sepal width in cm
	- \Box petal length in cm
	- \Box petal width in cm

[Dimensionality Problem](#page-1-0) [Component Analysis](#page-10-0) [PCA](#page-13-0) [LDA](#page-29-0) [Feature Selection](#page-46-0)

Examples: Iris data representation

Figure: Scatter plot of the iris data. Diagonal cells show the histogram for each feature. Other cells show scatters of pairs of features x_1, x_2, x_3, x_4 in top-down and left-right order. Red, green and blue points represent samples for the setosa, versicolor and virginica classes, respectively.

Examples: Iris data representation

Figure: Scatter plot of the projection of the iris data onto the first two and the first three principal axes.

Linear Discriminant Analysis

 PCA seeks directions that are efficient for representation, discriminant analysis seeks directions that are efficient for discrimination. $\frac{1}{2}$.10. $\frac{1}{2}$. $\frac{1}{2}$

Figure. The figure 4.27: Projection of the same set of samples onto the unclearent lines in the uncertains marked as w. The figure on the right shows greater separation between the red and black projected points Figure: Projection of the same set of samples onto two different lines in the directions marked as w. The

■ Suppose $x_1, x_2, ..., x_n \in \mathbb{R}^d$ are divided into two subsets \mathcal{D}_1 $(n_1$ samples) and \mathcal{D}_2 (n_2 samples) corresponding to the classes ω_1 and ω_2 respectively, the goal is to find a projection onto a line defined as

$$
y = \mathbf{w}^T \mathbf{x}
$$

such that the points corresponding to \mathcal{D}_1 and \mathcal{D}_2 are well separated.

 \blacksquare A corresponding set of n samples y_1, y_2, \ldots, y_n divided into the subset \mathcal{Y}_1 and \mathcal{Y}_2 .

 \blacksquare The criterion function for the best separation can be defined as

and is simply the projection of \mathcal{A}

$$
J(\mathbf{w}) = \frac{|\tilde{m}_1 - \tilde{m}_2|^2}{\tilde{s}_1^2 + \tilde{s}_2^2}
$$

where, \tilde{m}_i is the sample mean and \tilde{s}_i^2 is the scatter for the projected samples $b = \frac{1}{2}$ labeled ω_i , given as α the true case of threshold criterion before α true classifier. We first consider the set of between the means to be large relative to be standard deviations for the standard deviations for the standard deviations for ample mean and s_i is the scatter for the projected samples as labelled with \mathcal{S}

$$
\tilde{m}_i = \frac{1}{n_i} \sum_{y \in \mathcal{Y}_i} y \qquad \qquad \tilde{s}_i^2 = \sum_{y \in \mathcal{Y}_i} (y - \tilde{m}_i)^2
$$

f miles is miles. and an interest with the geometric mempression that This is called the *Fisher's linear discriminant* with the geometric interpretation that the best projection makes the difference between the means as large as possible relative to the variance.

s˜2 ¹ + ˜s² 2

is maximum (and independent of w). While the w maximizing J(·) leads to the

2

 \blacksquare To compute the optimal w, we define the *scatter matrices* S_i

$$
\mathbf{S}_{i} = \sum_{\mathbf{x} \in \mathcal{D}_{i}} (\mathbf{x} - \mathbf{m}_{i}) (\mathbf{x} - \mathbf{m}_{i})^{t}
$$

where,

$$
\mathbf{m}_i = \frac{1}{n_i} \sum_{\mathbf{x} \in \mathcal{D}_i} \mathbf{x}
$$

 \blacksquare The within-class scatter matrix S_W

$$
\mathbf{S}_W = \mathbf{S}_1 + \mathbf{S}_2
$$

and the *between-class scatter matrix* S_B

$$
\mathbf{S}_B = \left(\mathbf{m}_1 - \mathbf{m}_2\right) \left(\mathbf{m}_1 - \mathbf{m}_2\right)^t
$$

■ Then, the criterion function becomes

$$
J(\mathbf{w}) = \frac{|\tilde{m}_1 - \tilde{m}_2|^2}{\tilde{s}_1^2 + \tilde{s}_2^2} = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}}
$$

This expression is well known in mathematical physics as the generalized Rayleigh quotient.

A vector w that maximizes $J(\cdot)$ must satisfy

 $S_{BW} = \lambda S_W w$ $S_W^{-1}S_Bw = \lambda w$

In this particular case, it is unnecessary to solve for the eigenvalues and eigenvectors of $\mathrm{S_W}^{-1}\mathrm{S}_B$ due to the fact that $\mathrm{S}_B\mathrm{w}$ is always in the direction of $\mathrm{m}_1-\mathrm{m}_2$

So we can find the immediate solution as

$$
\mathbf{w} = \mathbf{S}_W^{-1} \left(\mathbf{m}_1 - \mathbf{m}_2 \right)
$$

- Note that, S_W is symmetric and positive semidefinite, and it is usually nonsingular if $n > d$. S_B is also symmetric and positive semidefinite, but its rank is at most 1.
- \blacksquare Thus, we have obtained w for Fisher's linear discriminant $-$ the linear function yielding the maximum ratio of between-class scatter to within-class scatter.

Example to be solved

Question: Given the following sets of feature vector belonging to two classes ω_1 and ω_2 which is Gaussian distributed.

$$
\left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \begin{pmatrix} 5 \\ 5 \end{pmatrix}, \begin{pmatrix} 7 \\ 5 \end{pmatrix} \right\} \in \omega_1
$$

$$
\left\{ \begin{pmatrix} 6 \\ 2 \end{pmatrix}, \begin{pmatrix} 9 \\ 4 \end{pmatrix}, \begin{pmatrix} 7 \\ 3 \end{pmatrix}, \begin{pmatrix} 11 \\ 4 \end{pmatrix}, \begin{pmatrix} 13 \\ 6 \end{pmatrix} \right\} \in \omega_2
$$

Find out the best direction of the line of projection that best separates the data in one-dimensional feature space.

Multiple Discriminant Analysis

[Dimensionality Problem](#page-1-0) [Component Analysis](#page-10-0) [PCA](#page-13-0) [LDA](#page-29-0) [Feature Selection](#page-46-0)

Multiple Discriminant Analysis

Figure: Three-dimensional distributions are projected onto two-dimensional subspaces, described by a normal s w_1 and w_2 . vectors W_1 and W_2 .

space to a (c \sim 1)-dimensional space, and it is tacit lying assumed that d \sim involves c 1 discriminant functions. Thus, the projection is found in the projection is found in the projection

 \blacksquare The within-class scatter matrix

$$
\mathbf{S}_W = \sum_{i=1}^c \mathbf{S}_i
$$

where

$$
\mathbf{S}_{i} = \sum_{\mathbf{x} \in \mathcal{D}_{i}} (\mathbf{x} - \mathbf{m}_{i})(\mathbf{x} - \mathbf{m}_{i})^{t} \qquad \mathbf{m}_{i} = \frac{1}{n_{i}} \sum_{\mathbf{x} \in \mathcal{D}_{i}} \mathbf{x}
$$

 \blacksquare The proper generalization for S_B is not quite so obvious. so obviou

Then it follows that

total a total mean vector matrix states matrix states matrix states matrix ST by and a total scatter matrix ST **E** Suppose that we define a *total mean vector* m and a *total scatter matrix* S_T by

$$
\mathbf{m} = \frac{1}{n} \sum_{\mathbf{x}} \mathbf{x} = \frac{1}{n} \sum_{i=1}^{c} n_i \mathbf{m}_i
$$

$$
\mathbf{S}_T = \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^t
$$

 $-$

Multiple Discriminant Analysis Then it follows that

 \blacksquare Then we can write Then it follows that

$$
S_T = \sum_{i=1}^{c} \sum_{\mathbf{x} \in \mathcal{D}_i} (\mathbf{x} - \mathbf{m}_i + \mathbf{m}_i - \mathbf{m})(\mathbf{x} - \mathbf{m}_i + \mathbf{m}_i - \mathbf{m})^t
$$

\n
$$
= \sum_{i=1}^{c} \sum_{\mathbf{x} \in \mathcal{D}_i} (\mathbf{x} - \mathbf{m}_i)(\mathbf{x} - \mathbf{m}_i)^t + \sum_{i=1}^{c} \sum_{\mathbf{x} \in \mathcal{D}_i} (\mathbf{m}_i - \mathbf{m})(\mathbf{m}_i - \mathbf{m})^t
$$

\n
$$
= S_W + \sum_{i=1}^{c} n_i (\mathbf{m}_i - \mathbf{m})(\mathbf{m}_i - \mathbf{m})^t.
$$

Therefore, \mathbf{e}_i

$$
S_T = S_W + S_B
$$

where

$$
\mathbf{S}_B = \sum_{i=1}^c n_i (\mathbf{m}_i - \mathbf{m})(\mathbf{m}_i - \mathbf{m})^t
$$

and

 $S_{\rm 3D}$, such that $S_{\rm 3D}$, such that $S_{\rm 3D}$, such that $S_{\rm 3D}$

 $\mathcal{S} = \{ \mathcal{S} \mid \mathcal{S} \in \mathcal{S} \mid \mathcal{S} \in \mathcal{S} \}$, where $\mathcal{S} = \{ \mathcal{S} \mid \mathcal{S} \in \mathcal{S} \}$

Multiple Discriminant Analysis

■ The projection form a d-dimensional space to a $(c-1)$ -dimensional space is accomplished by $c - 1$ discriminant functions

$$
y_i = \mathbf{w}_i^t \mathbf{x} \qquad i = 1, ..., c - 1
$$

 \blacksquare If the y_i are viewed as components of a vector ${\rm y}$ and the weight vector ${\rm w}_i$ are viewed as the columns of a d-by- $(c-1)$ matrix W, then the projection can be written as a single matrix equation

$$
\mathbf{y} = \mathbf{W}^t \mathbf{x}
$$

\blacksquare Multiple Discriminant Analysis

 \blacksquare The samples x_1, x_2, \ldots, x_n project to a corresponding set of samples y_1, y_2, \ldots, y_n , which can be described by their own mean vectors and scatter matrices. Thus

$$
\tilde{\mathbf{m}}_i = \frac{1}{n_i} \sum_{\mathbf{y} \in \mathcal{Y}_i} \mathbf{y}
$$

$$
\tilde{\mathbf{m}} = \frac{1}{n} \sum_{i=1}^c n_i \tilde{\mathbf{m}}_i
$$

$$
\tilde{\mathbf{S}}_W = \sum_{i=1}^c \sum_{\mathbf{y} \in \mathcal{Y}_i} (\mathbf{y} - \tilde{\mathbf{m}}_i) (\mathbf{y} - \tilde{\mathbf{m}}_i)^t
$$

and

$$
\tilde{\mathbf{S}}_B = \sum_{i=1}^c n_i (\tilde{\mathbf{m}}_i - \tilde{\mathbf{m}}) (\tilde{\mathbf{m}}_i - \tilde{\mathbf{m}})^t,
$$

^S˜^B ⁼ ^c

Multiple Discriminant Analysis

\blacksquare It is a straightforward matter to show that

$$
\tilde{\mathbf{S}}_W = \mathbf{W}^t \mathbf{S}_W \mathbf{W}
$$

and

$$
\tilde{\mathbf{S}}_B = \mathbf{W}^t \mathbf{S}_B \mathbf{W}.
$$

These equations show how the within-class and between-class scatter matrices are These equations show how the within-class and between-class scatter matrices are transformed by the projection to the lower dimensional space. seek is a transformation matrix w that in some sense matrix \mathcal{L}_{max} [Dimensionality Problem](#page-1-0) Component Analysis PCA LDA [Feature Selection](#page-46-0) toblem Component Analysis PCA **LDA E**eature (Fig. 4.28). What we have discussed a space (Fig. 4.28). What we have discussed a space of [the](#page-13-0) lower dimensiona[l spa](#page-29-0)ce (Fig. 4.28). What we have discussed a space of the space seek is a tr[an](#page-10-0)[s](#page-41-0)[f](#page-12-0)ormation matrix [W](#page-13-0) [t](#page-48-0)[h](#page-49-0)[a](#page-33-0)t [i](#page-38-0)s a tra[n](#page-23-0)sf[o](#page-27-0)r[m](#page-36-0)ation matri[x](#page-34-0) $\mathcal{L}_{\mathcal{S}}$ that is a transformation of th[e](#page-51-0) ratio [of](#page-46-0) the ratio of the ratio

W¹

Multiple Discriminant Analysis: Solution a simple scatter to the with

 \blacksquare The criterion function

$$
J(\mathbf{W}) = \frac{|\widetilde{\mathbf{S}}_B|}{|\widetilde{\mathbf{S}}_W|} = \frac{|\mathbf{W}^t\mathbf{S}_B\mathbf{W}|}{|\mathbf{W}^t\mathbf{S}_W\mathbf{W}|}
$$

is the determinant of the scatter matrix. The determinant is the product of the

the problem of finding a rectangular matrix $\mathrm W$ that maximized $J(\cdot).$ as propient of middle

 $t_{\rm{rel}}$ for the solution is turns out that the solution is relatively simple. The columns of α $\;\blacksquare\;$ The columns of an optimal W are the generalized eigenvectors that correspond to the largest eigenvalues in

$$
(\mathbf{S}_B - \lambda_i \mathbf{S}_W)\mathbf{w}_i = 0
$$

eigenvectors are merely the eigenvectors of SB, and the eigenvectors with nonzero

Multiple Discriminant Analysis: Observation The Discriminant Analysis: $\,$ Observation is relatively simple. The columns of $\,$

 $(\mathbf{S}_B - \lambda_i \mathbf{S}_W)\mathbf{w}_i = 0$

and α are the generalized eigenvectors that correspond to that correspond to the largest eigenvectors that correspond to the largest eigenvectors that correspond to the largest eigenvectors that correspond to the large

- If S_W is nonsingular, this can be converted to a conventional eigenvalue problem as hefore. \blacksquare ϵ nonzero eigenvalues. If the within-class scatter is isotropic, the within-class scatter is isotropi before. t the conventional eigenvalue problem as \mathcal{L} as before. However, this convention as before. $\mathsf{efore}\,.\mathsf{f}$
- Computation of the inverse of S_W is expensive.
- Instead, one can find the eigenvalues as the roots of the characteristic polynomial s catter of the projected distribution of the constraint matrix of s and s and s as s as s as s as s and s as s and s a

$$
|\mathbf{S}_B - \lambda_i \mathbf{S}_W| = 0
$$

 ϵ and then solve ϵ and shen solve and then solve and then solve

$$
(\mathbf{S}_B - \lambda_i \mathbf{S}_W)\mathbf{w}_i = 0
$$

in Chap. ??. Once we have projected the distributions onto the optimal subspace

correspond to these nonzero eigenvalues. If the within-class scatter is isotropic, the

directly for the eigenvectors w_i . l_{c} of the eigenvectors m_l .

Feature Selection

- Feature reduction uses a linear or non-linear combination of features.
- An alternative to feature reduction is feature selection that reduces dimensionality by selecting subsets of existing features.
- Benefits of performing feature selection:
	- \Box avoid curse of dimensionality
	- \Box reduce the computational cost
	- \Box improves accuracy
	- avoid overfitting
- The first step in feature selection is to define a criterion function that is often a function of the classification error.
- \blacksquare Note that, the use of classification error in the criterion function makes feature selection procedures dependent on the specific classifier used.

- The most straightforward approach would require
	- \Box examining all $\begin{pmatrix} d \\ d \end{pmatrix}$ m \setminus possible subsets of size m ,
	- \Box selecting the subset that performs the best according to the criterion function.
- The number of subsets grows combinatorially, making the exhaustive search impractical.
- There are two main types of feature selection algorithms:
	- □ Wrapper Feature Selection Methods.
	- □ Filter Feature Selection Methods.

Examples: Iris data representation

Examples: Iris data representation

Figure: Scatter plot of the iris data. Off-diagonal cells show scatters of pairs of features x_1, x_2, x_3, x_4 .

■ Sequential forward selection:

- 1. First, the best single feature is selected.
- 2. Then, pairs of features are formed using one of the remaining features and this best feature, and the best pair is selected.
- 3. Next, triplets of features are formed using one of the remaining features and these two best features, and the best triplet is selected.
- 4. This procedure continues until all or a predefined number of features are selected.

() and y-axis shows the features added at each iteration (the first iteration is defined at each iteration is \sim

Feature Selection

- Sequential backward selection:
	- \Box First, the criterion function is computed for all d features.
	- \Box Then, each feature is deleted one at a time, the criterion function is computed for all subsets with $d-1$ features, and the worst feature is discarded.
	- \Box Next, each feature among the remaining $d - 1$ is deleted one at a time, and the worst feature is discarded to form a subset with $d - 2$ features.
	- \Box This procedure continues until one feature or a predefined number of features are left.

of a satellite image using 28 features. α axis shows the classification α

- The choice between feature reduction and feature selection depends on the application domain and the specific training data.
- Feature selection leads to savings in computational costs and the selected features retain their original physical interpretation.
- Feature reduction with transformations may provide a better discriminative ability but these new features may not have a clear physical meaning.

Question:

(a) Given the following sets of feature vector belonging to two classes ω_1 and ω_2 which is Gaussian distributed.

> $(1,2)^t$, $(3,5)^t$, $(4,3)^t$, $(5,6)^t$, $(7,5)^t \in \omega_1$ $(6,2)^t$, $(9,4)^t$, $(10,1)^t$, $(12,3)^t$, $(13,6)^t \in \omega_2$

The vector are projected onto a line to represent the feature vectors by a single feature. Find out the best direction of the line of projection that maintains the separability of the two classes.

(b) Assuming the mean of the projected point belonging to ω_1 to be the origin of the projection line, identify the point on the projection line that optimally separates two classes. Assume the classes to be equally probable and the projected features also follow Gaussian distribution.

- [1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.
- [2] Gose, E. (1997). Pattern recognition and image analysis.

