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Topics to be covered

= Dimensionality Problem
® Dimensionality /Feature reduction

O Principal component analysis
O Linear discriminant analysis
B Fisher Linear discriminant
B Multiple Discriminant Analysis

m Feature Selection
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Introduction

B |n practical multicategory applications, it is not unusual to encounter problems
involving tens or hundreds of features.

B |ntuitively, it may seem that each feature is useful for at least some of the
discriminations.

® |n general, if the performance obtained with a given set of features is inadequate, it
is natural to consider adding new features.

® Even though increasing the number of features increases the complexity of the
classifier, it may be acceptable for an improved performance.
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Introduction

Figure: There is a non-zero Bayes error in the one-dimensional x; space or the two-dimensional x1, zo space.
However, the Bayes error vanishes in the 1, x2,x3 space because of non-overlapping densities.
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Problems of Dimensionality

® Unfortunately, it has frequently been observed in practice that, beyond a certain
point, adding new features leads to worse rather than better performance.

® This is called the curse of dimensionality.

® There are two issues that we must be careful about:
O How is the classification accuracy affected by the dimensionality (relative to the amount

of training data)?
0 How is the complexity of the classifier affected by the dimensionality?
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Problems of Dimensionality

m Potential reasons for increase in error include

0 wrong assumptions in model selection,
O estimation errors due to the finite number of training samples for high-dimensional
observations (overfitting).

m Potential solutions include

O reducing the dimensionality,
0 simplifying the estimation.
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Problems of Dimensionality

® Dimensionality can be reduced by
O redesigning the features,

O selecting an appropriate subset among the existing features,
0 combining existing features.

® Estimation errors can be simplified by
O assuming equal covariance for all classes (for the Gaussian case),
O using regularization,
O using prior information and a Bayes estimate,
O using heuristics such as conditional independence,
a
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Problem of Dimensionality
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Figure: The “training data” (black dots) were selected from a quadratic function plus Gaussian noise, i.e,
f(x) = ax?® + bx + ¢ + € where p(e) = N(0,02). The 10th degree polynomial shown fits the data perfectly, but
we desire instead the second-order function f(z), since it would lead to better predictions for few samples.
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Problem of Dimensionality

m All of the commonly used classifiers can suffer from the curse of dimensionality.

® While an exact relationship between the probability of error, the number of training
samples, the number of features, and the number of parameters is very difficult to
establish, some guidelines have been suggested.

® |t is generally accepted that using at least ten times as many training samples per
class as the number of features (n/d > 10) is a good practice.
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Component Analysis and Discriminants

® One way of coping with the problem of high dimensionality is to reduce the
dimensionality by combining features.
® |ssues in feature/dimensionality reduction:
O Linear vs. non-linear transformations.
O Use of class labels or not (depends on the availability of training data).
® |inear combinations are particularly attractive because they are simple to compute
and are analytically tractable.
® | inear methods project the high-dimensional data onto a lower dimensional space.
m Advantages of these projections include

O reduced complexity in estimation and classification,
O ability to visually examine the multivariate data in two or three dimensions.

Kundan Kumar Pattern Classification




Component Analysis
ooe

Component Analysis and Discriminants

® Given x € RY, the goal is to find a linear transformation A that gives y = AT,
y € RY where d’ < d.

® Two classical approaches for finding optimal linear transformations are:

O Principal Components Analysis (PCA): Seeks a projection that best represents the data
in a least-squares sense.

O Multiple Discriminant Analysis (MDA ): Seeks a projection that best separates the data
in a least-squares sense.
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Principal Component Analysis
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Principal Component Analysis

® Given x1,X2,...,X, € R the goal is to find a d’-dimensional subspace where the
reconstruction error of x; in this subspace is minimized.

® The squared-error criterion function Jy(xg) by

Jo(x0) = Z %o — xk||”
k=1

and seek the value of x( that minimizes .Jj

B |t is simple to show that the solution to this problem is given by xyp = m, where m

is the sample mean.
1 n
m = — E Xk
n
k=1
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Principal Component Analysis

® This can be easily verified by writing

ZH xo —m) — (xp —m)|*
n n

= Z (o = m)[*=2 Y (x0 — m)" (i — m)+ D || (i — m)|?
k=1
= Z (o = m)[*=2(x0 —m)" Y (x = m)+ D || (xe — m)||?

= Z ll(x0 = m)[|*+ > [[(xs, —m)|?
k=1 k=1

independent of xg

® Since the second sum is independent of xg, So the above expression is obviously
minimized by the choice of xg = m.
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Principal Component Analysis

® The sample mean is a zero-dimensional representation of the data set. It is simple,
but it does not reveal any of the variability in the data.

= One-dimensional representation by projecting the data onto a line running through
the sample mean.

® |et e be a unit vector in the direction of the line. Then equation of line will be
X =1m+ ae

where «a is any real value, corresponds to the distance of any point x form the mean
m.

® |f x; = m + age, then we can find optimal set of coefficients a; by minimizing the
squared-error criterion function.
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Principal Component Analysis

m Squared-error criterion function
n

Jl(a17a27"'7a'n7e) = ZH(m—I—ake) _XkHQ

k=1

llaxe — (xi — m)||*

[
M=

>
Il
-

azlle|? fQZake Xp —m +Z|| Xp —m

® Recognize that |le|| =1, partlally differentiating with respect to ay, and setting the
derivative to zero, we obtain

I
WM;K

ap = el (x;, — m)
®m Geometrically, this result merely says that we obtain a least-squares solution by
projecting the vector x; onto the line in the direction of e that passes through the
sample mean.
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Principal Component Analysis

® The solution to the problem involves the scatter matrix S defined by

n

S = Z (xx —m)(xx —m)”

k=1

® Scatter matrix is n times the sample covariance matrix.
m Substitute ay in the cost function

n n n
Ji(e) =) ap—2) ak+ 3y |xk —m|?
k=1 k=1 k=1

=S G —m) > i — m?
k=1

k=1
n n
==> el —m)(xx —m) e+ >[Ik — ml?
k=1 k=1
n
=—e'Se+ Y [xk —ml|”
k=1
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Principal Component Analysis

B So the resulting cost function

Ji(e) = —e"Se + Z llxx — m|?

k=1

Use Lagrange multipliers to maximize e’ Se subject to the constraint that ||e| = 1.

Letting A be the undetermined multiplier, we differentiate

u=-¢e"Se—Ae'e—1)

ou

L =98 —2
R Se e
Se = Je

B |n particular, because e”'Se = AeTe = ), it follows that to maximize e” Se, so select the eigenvector
corresponding to the largest eigenvalue of the scatter matrix.
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Principal Component Analysis

® To find the best one-dimensional projection of the data (best in the
least-sum-of-squared-error sense), we project the data onto a line through the
sample mean in the direction of the eigenvector of the scatter matrix having the
largest eigenvalue.

® This result can be readily extended from 1-D to a d’-D projection.

d/
X =m+ E a;€e;
i=1

where d' < d.
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Principal Component Analysis

® |t is not difficult to show that the criterion function
2

n d’
Jg = Z m + Z aki€i | — Xk
k=1 i=1
is minimized when the vector ej, e, ..., ey are the d’ eigenvector of the scatter

matrix having the largest eigenvalues.
® Because the scatter matrix is real and symmetric, these eigenvectors are orthogonal.

® The coefficients a; are the components of x in that basis, and are the principal
components.
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Principal Component Analysis

® Given x1,X2,...,X, € R the goal is to find a d’-dimensional subspace where the
reconstruction error of x; in this subspace is minimized.

® The squared error criterion function Jy(xg) can be minimized by selecting xp = m,
where m is the sample mean.

® The sample mean is a zero-dimensional representation of the data set. It is simple,
but it does not reveal any of the variability in the data.

® \We must consider at least one-dimensional representation of data by choosing

X =m + ae

and compute the optimal value of a such that the squared error criterion function
J1 is minimum.
® \We obtained the solution as
ap, = e’ (xx — m)
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Principal Component Analysis

® Given x1,X2,...,X, € R the goal is to find a d’-dimensional subspace where the
reconstruction error of x; in this subspace is minimized.

® The criterion function for the reconstruction error can be defined in the least
squares sense as

n d’ 2
Jd’ :Z m—i—Zakiei — Xk
k=1 i=1
where e1,e9,...,eq are the bases for the subspace (stored as the columns of A)

and a; is the projection of x; onto that subspace.
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Principal Component Analysis

B |t can be shown that Jy is minimized when ey, es, ..., ey are eigenvectors
corresponding to first d’ largest eigenvalues of scatter matrix.

S=> (x —m)(x —m)"
k=1

® The coefficients a = (a;,...,aq)? are called the principal components.

® When the eigenvectors are sorted in descending order of the corresponding
eigenvalues, the greatest variance of the data lies on the first principal component,
the second greatest variance on the second component, and so on.
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Example to be solved

Question: Given the following sets of feature vector belonging to two classes w1 and w2 which is

Gaussian distributed.

() () (2)(0))ew
()00 () (5 ) e

Find out the best direction of the line of projection that best represent the data in one-dimensional

feature space. 8
6 3
« e
a4 . o
. .
2 . .
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Examples: Iris dataset representation

m "lris” dataset is very famous dataset used for data analysis problems (classification,
feature reduction, and many more)
® Available on the UCI machine learning repository
https://archive.ics.uci.edu/ml/datasets/Iris.
® The iris dataset contains measurements for 150 iris flowers from three different
species.
O lIris-setosa (ny = 50)
O Iris-versicolor (ng = 50)
O Iris-virginica (ng = 50)
® And the four features of in Iris dataset are:
sepal length in cm
sepal width in cm
petal length in cm
petal width in cm

[m]

O o000
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Examples: Iris data representation

I|| ||||||| ||I|I I
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sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)

petal width (cm)  petal length (em) sepal width (cm) — sepal length (em)

Figure: Scatter plot of the iris data. Diagonal cells show the histogram for each feature. Other cells show
scatters of pairs of features x1,x2,x3,24 in top-down and left-right order. Red, green and blue points represent
samples for the setosa, versicolor and virginica classes, respectively.
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Examples: Iris data representation

®  Iris-setosa

® Iris lor

Tris-virginica

rsicolor

is-virginica

1st eigenvector, e Ist eigepy,
=) 1 146 nvector, e N

Figure: Scatter plot of the projection of the iris data onto the first two and the first three principal axes.
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Linear Discriminant Analysis
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Fisher Linear Discriminant
m PCA seeks directions that are efficient for representation, discriminant analysis

seeks directions that are efficient for discrimination.
X, X2
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Figure: Projection of the same set of samples onto two different lines in the directions marked as w. The
Pattern Classification

figure on the right shows greater separation between the red and black projected points
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Fisher Linear Discriminant

® Suppose Xi,X2,...,X, € R? are divided %
into two subsets D; (n; samples) and 2t °
Dy (ng samples) corresponding to the ! g
classes w; and wo respectively, the goal 180 ,’ °
is to find a projection onto a line Y ! °
. 1
defined as 1 e
L 'S
y=wlx i ! g
1 ‘
. . !
such that the points corresponding to I’,',’O-S e .
!
Dy and Dy are well separated. Iy I,’ 9,
. Y ) I
m A corresponding set of n samples 4'5~ [ i X
Y1,Y2, - .., Yn divided into the subset ) " /]
¥
and yg. -0.5
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Fisher Linear Discriminant

® The criterion function for the best separation can be defined as

|y — ma|?
Jw)="—— "=
(w) 57 + 53

where, m; is the sample mean and 512 is the scatter for the projected samples
labeled w;, given as

~ o 1 2 _ )2
i = EZ@/ 5= (y—mm)
yeYi YyEY;
® This is called the Fisher’s linear discriminant with the geometric interpretation that
the best projection makes the difference between the means as large as possible
relative to the variance.
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Fisher Linear Discriminant

® To compute the optimal w, we define the scatter matrices S;

Si= ) (x—my)(x—m)

x€D;
where,
1

m;, = — X

iy

x€eD;

® The within-class scatter matrix Sy

Sw=81+85;

and the between-class scatter matrix Sg

Sp = (m; —mjy) (m; — m2)t
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Fisher Linear Discriminant

®m Then, the criterion function becomes

o |77~’Ll —Th2|2 o WTSBW

J(w) =

5% —+ 55 WTSWW

This expression is well known in mathematical physics as the generalized Rayleigh
quotient.

® A vector w that maximizes J(-) must satisfy

Spw = ASyw

SW_ISBW = \w

® In this particular case, it is unnecessary to solve for the eigenvalues and eigenvectors
of Sy~ 'Sy due to the fact that Spw is always in the direction of m; — mo
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Fisher Linear Discriminant

® So we can find the immediate solution as

W = Sa/l (m1 —IIlQ)

m Note that, Sy is symmetric and positive semidefinite, and it is usually nonsingular
if n > d. Sp is also symmetric and positive semidefinite, but its rank is at most 1.

® Thus, we have obtained w for Fisher’s linear discriminant — the linear function
yielding the maximum ratio of between-class scatter to within-class scatter.
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Example to be solved

Question: Given the following sets of feature vector belonging to two classes w1 and w2 which is

Gaussian distributed.

1 3 4 5 7 c

2 )04 )o\3)'\5)'\5 w1

6 9 7 11 13 c

2 ’ 4 ) 3 ) 4 ) 6 w2
Find out the best direction of the line of projection that best separates the data in one-dimensional
feature space.

0 5 10 15
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Multiple Discriminant Analysis
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Multiple Discriminant Analysis

@
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1

Figure: Three-dimensional distributions are projected onto two-dimensional subspaces, described by a normal
vectors W1 and Ws.
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Multiple Discriminant Analysis

® The within-class scatter matrix
C
Sy = Z S,
=1
where

Si:Z(x—mi)(x—mi)t mi:%ZX

xeD; " xeD;

® The proper generalization for Sp is not quite so obvious.

® Suppose that we define a total mean vector m and a total scatter matrix St by

m:%Zx:%Znimi ST:Z(x—m)(x—m)t
X i=1

X
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Multiple Discriminant Analysis

® Then we can write

ST = Z Z (xfmierifm)(xfmierifm)t
i=1xeD;
= Z Z (x —m;)(x —my)t + Z Z (m; — m)(m; — m)"
i=1 xeD; i=1 x€D;

= Sw+ an(m1 —m)(m; — m)".

=1
m Therefore,
St =Sw +Sp

where

S = an(ml —m)(m; —m)’
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Multiple Discriminant Analysis

® The projection form a d-dimensional space to a (¢ — 1)-dimensional space is
accomplished by ¢ — 1 discriminant functions

— wit -
Yi = W;X 1=1,...,c—1

m |f the y; are viewed as components of a vector y and the weight vector w; are
viewed as the columns of a d-by-(¢ — 1) matrix W, then the projection can be

written as a single matrix equation
y = W'x

Pattern Classification
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Multiple Discriminant Analysis

® The samples x1,X9,...,X, project to a corresponding set of samples y1,y2,...,Vn,
which can be described by their own mean vectors and scatter matrices. Thus

and
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Multiple Discriminant Analysis

® |t is a straightforward matter to show that
Sy = WS,y W
and

Sp = W!SpW.

® These equations show how the within-class and between-class scatter matrices are

transformed by the projection to the lower dimensional space.

Kundan Kumar
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Multiple Discriminant Analysis: Solution

® The criterion function

S| |W'SpW|

TW) =15, = Wisyw|

the problem of finding a rectangular matrix W that maximized J(-).

® The columns of an optimal W are the generalized eigenvectors that correspond to
the largest eigenvalues in

(SB — )\’LSW)WZ = 0
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Multiple Discriminant Analysis: Observation

(SB — )\iSW)Wi =0

If Sy is nonsingular, this can be converted to a conventional eigenvalue problem as
before.

Computation of the inverse of Sy is expensive.

Instead, one can find the eigenvalues as the roots of the characteristic polynomial

IS5 — ASw| =0

® and then solve

(SB — )\,Sw)WL =0

directly for the eigenvectors w;.
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Feature Selection
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Feature Selection

m Feature reduction uses a linear or non-linear combination of features.

® An alternative to feature reduction is feature selection that reduces dimensionality
by selecting subsets of existing features.
m Benefits of performing feature selection:
0 avoid curse of dimensionality
0 reduce the computational cost
O improves accuracy
0 avoid overfitting
® The first step in feature selection is to define a criterion function that is often a
function of the classification error.

m Note that, the use of classification error in the criterion function makes feature
selection procedures dependent on the specific classifier used.
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Feature Selection

® The most straightforward approach would require

. d . :
0 examining all ( m ) possible subsets of size m,
O selecting the subset that performs the best according to the criterion function.
® The number of subsets grows combinatorially, making the exhaustive search
impractical.

® There are two main types of feature selection algorithms:

0 Wrapper Feature Selection Methods.
O Filter Feature Selection Methods.
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Examples: Iris data representation

B virginica

sepal length (cm)

3.0 35
sepal width (cm)

I virginica

petal length (cm)
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10 15
petal width (cm)
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Examples: Iris data representation
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Figure: Scatter plot of the iris data. Off-diagonal cells show scatters of pairs of features x1,z2, 3, 4.
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m Sequential forward selection:

1. First, the best single feature is selected.

2. Then, pairs of features are formed
using one of the remaining features and
this best feature, and the best pair is
selected.

3. Next, triplets of features are formed
using one of the remaining features and
these two best features, and the best
triplet is selected.

4. This procedure continues until all or a
predefined number of features are
selected.

Sequential forward selection

DEM::ELEVATION|
IKONOS2::BAND1
IKONOS2::BAND3
IKONOS2::BAND2
IKONOS2::BAND4,
IKONOS2_GABOR4::FINESODEG
IKONOS2_GABOR4::COARSE90DEG]
IKONOS2_GABORA::FINEODEG
IKONOS2_GABOR4:COARSEODEG
AERIAL_GABOR1:FINEODEG
IKONOS2_GABOR1::COARSEODEG
IKONOS2_GABOR1::FINEODEG
IKONOS3::BAND4|
IKONOS3::BAND3
IKONOS2_GABOR1::FINESODEG
IKONOS2_GABOR1:COARSE9Q0DEG|
AERIAL_GABOR2:COARSEODEG
IKONOS3::BAND1
AERIAL_GABOR1::FINESODEG
AERIAL_GABOR2::FINESODEG
AERIAL_GABOR1:COARSE90DEG
IKONOS3::BAND2
AERIAL_GABOR2:FINEODEG
AERIAL::BAND1

AERIAL::BAND2
AERIAL_GABOR2::COARSE90DEG
AERIAL::BAND3
AERIAL_GABOR1::COARSEODEG

58 60 62




Feature Selection

Feature Selection
000000800

m Sequential backward selection:

O First, the criterion function is computed
for all d features.

O Then, each feature is deleted one at a
time, the criterion function is computed
for all subsets with d — 1 features, and
the worst feature is discarded.

O Next, each feature among the
remaining d — 1 is deleted one at a
time, and the worst feature is discarded
to form a subset with d — 2 features.

0 This procedure continues until one
feature or a predefined number of
features are left.
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AERIAL_GABOR2::FINEODEG
AERIAL:BAND2

AERIAL::BAND3

IKONOS3::BAND2
AERIAL_GABOR1:COARSEODEG
AERIAL_GABOR2:COARSE90DEG
AERIAL_GABOR1::FINESODEG
IKONOS2_GABORA4::FINEODEG
IKONOS2::BAND4.
IKONOS2_GABOR1::FINEODEG
IKONOS2_GABOR1:COARSES0DEG
IKONOS2_GABOR1::COARSEODEG
IKONOS2_GABOR4:COARSEODEG
IKONOS2::BAND2
IKONOS3::BAND1
IKONOS2_GABOR1::FINESODEG
IKONOS3::BAND4.
IKONOS2_GABOR4:COARSES0DEG
AERIAL_GABOR2::FINE9ODEG
AERIAL_GABOR1::FINEODEG
AERIAL_GABOR2::COARSEODEG
IKONOS2_GABOR4:FINE9ODEG
IKONOS2::BAND3
IKONOS2::BAND1
AERIAL_GABOR1::COARSESODEG
IKONOS3::BAND3
DEM::ELEVATION|

NONE

Sequential backward selection
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Summary

® The choice between feature reduction and feature selection depends on the
application domain and the specific training data.

® Feature selection leads to savings in computational costs and the selected features
retain their original physical interpretation.

® Feature reduction with transformations may provide a better discriminative ability
but these new features may not have a clear physical meaning.
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Assignment Problem

Question:
(a) Given the following sets of feature vector belonging to two classes w; and ws which is Gaussian
distributed.
(1, 2)t7 (37 5)t7 (47 S)tv (57 6)t7 (77 5)t cwr
(6,2)", (9,4)", (10,1)", (12,3)", (13,6)" € w2
The vector are projected onto a line to represent the feature vectors by a single feature. Find out

the best direction of the line of projection that maintains the separability of the two classes.

(b) Assuming the mean of the projected point belonging to w1 to be the origin of the projection line,
identify the point on the projection line that optimally separates two classes. Assume the classes to
be equally probable and the projected features also follow Gaussian distribution.
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