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Topics to be covered

� Dimensionality Problem
� Dimensionality/Feature reduction

� Principal component analysis
� Linear discriminant analysis

� Fisher Linear discriminant
� Multiple Discriminant Analysis

� Feature Selection
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Dimensionality Problem
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Introduction

� In practical multicategory applications, it is not unusual to encounter problems
involving tens or hundreds of features.

� Intuitively, it may seem that each feature is useful for at least some of the
discriminations.

� In general, if the performance obtained with a given set of features is inadequate, it
is natural to consider adding new features.

� Even though increasing the number of features increases the complexity of the
classifier, it may be acceptable for an improved performance.
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Introduction
28 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

x1
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Figure 3.3: Two three-dimensional distributions have nonoverlapping densities, and
thus in three dimensions the Bayes error vanishes. When projected to a subspace —
here, the two-dimensional x1−x2 subspace or a one-dimensional x1 subspace — there
can be greater overlap of the projected distributions, and hence greater Bayes errors.

design. The basic source of the difficulty can always be traced to the fact that we
have the wrong model — e.g., the Gaussian assumption or conditional assumption
are wrong — or the number of design or training samples is finite and thus the dis-
tributions are not estimated accurately. However, analysis of the problem is both
challenging and subtle. Simple cases do not exhibit the experimentally observed phe-
nomena, and more realistic cases are difficult to analyze. In an attempt to provide
some rigor, we shall return to topics related to problems of dimensionality and sample
size in Chap. ??.

3.7.2 Computational Complexity

We have mentioned that one consideration affecting our design methodology is that of
the computational difficulty, and here the technical notion of computational complex-
ity can be useful. First, we will will need to understand the notion of the order of aorder
function f(x): we say that the f(x) is “of the order of h(x)” — written f(x) = O(h(x))

big oh and generally read “big oh of h(x)” — if there exist constants c0 and x0 such that
|f(x)| ≤ c0|h(x)| for all x > x0. This means simply that for sufficiently large x,
an upper bound on the function grows no worse than h(x). For instance, suppose
f(x) = a0 + a1x + a2x

2; in that case we have f(x) = O(x2) because for sufficiently
large x, the constant, linear and quadratic terms can be “overcome” by proper choice
of c0 and x0. The generalization to functions of two or more variables is straightfor-
ward. It should be clear that by the definition above, the big oh order of a function is
not unique. For instance, we can describe our particular f(x) as being O(x2), O(x3),
O(x4), O(x2 ln x).

Because of the non-uniqueness of the big oh notation, we occasionally need to be

Figure: There is a non-zero Bayes error in the one-dimensional x1 space or the two-dimensional x1, x2 space.
However, the Bayes error vanishes in the x1, x2, x3 space because of non-overlapping densities.
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Problems of Dimensionality

� Unfortunately, it has frequently been observed in practice that, beyond a certain
point, adding new features leads to worse rather than better performance.

� This is called the curse of dimensionality.

� There are two issues that we must be careful about:
� How is the classification accuracy affected by the dimensionality (relative to the amount

of training data)?
� How is the complexity of the classifier affected by the dimensionality?
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Problems of Dimensionality

� Potential reasons for increase in error include
� wrong assumptions in model selection,
� estimation errors due to the finite number of training samples for high-dimensional

observations (overfitting).

� Potential solutions include
� reducing the dimensionality,
� simplifying the estimation.
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Problems of Dimensionality

� Dimensionality can be reduced by
� redesigning the features,
� selecting an appropriate subset among the existing features,
� combining existing features.

� Estimation errors can be simplified by
� assuming equal covariance for all classes (for the Gaussian case),
� using regularization,
� using prior information and a Bayes estimate,
� using heuristics such as conditional independence,
� · · · .
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Problem of Dimensionality

3.7. PROBLEMS OF DIMENSIONALITY 31

Here we have another apparent paradox. The classifier that results from assuming
independence is almost certainly suboptimal. It is understandable that it will perform
better if it happens that the features actually are independent, but how can it provide
better performance when this assumption is untrue? The answer again involves the
problem of insufficient data, and some insight into its nature can be gained from
considering an analogous problem in curve fitting. Figure 3.4 shows a set of ten data
points and two candidate curves for fitting them. The data points were obtained
by adding zero-mean, independent noise to a parabola. Thus, of all the possible
polynomials, presumably a parabola would provide the best fit, assuming that we are
interested in fitting data obtained in the future as well as the points at hand. Even
a straight line could fit the training data fairly well. The parabola provides a better
fit, but one might wonder whether the data are adequate to fix the curve. The best
parabola for a larger data set might be quite different, and over the interval shown
the straight line could easily be superior. The tenth-degree polynomial fits the given
data perfectly. However, we do not expect that a tenth-degree polynomial is required
here. In general, reliable interpolation or extrapolation can not be obtained unless
the solution is overdetermined, i.e., there are more points than function parameters
to be set.

2 4 6 8
x

-10

-5

5

10

f(x)

Figure 3.4: The “training data” (black dots) were selected from a quadradic function
plus Gaussian noise, i.e., f(x) = ax2 + bx + c + ε where p(ε) ∼ N(0, σ2). The 10th
degree polynomial shown fits the data perfectly, but we desire instead the second-order
function f(x), since it would lead to better predictions for new samples.

In fitting the points in Fig. 3.4, then, we might consider beginning with a high-
order polynomial (e.g., 10th order), and successively smoothing or simplifying our
model by eliminating the highest-order terms. While this would in virtually all cases
lead to greater error on the “training data,” we might expect the generalization to
improve.

Analogously, there are a number of heuristic methods that can be applied in
the Gaussian classifier case. For instance, suppose we wish to design a classifier
for distributions N(µ1,Σ1) and N(µ2,Σ2) and we have reason to believe that we
have insufficient data for accurately estimating the parameters. We might make the
simplification that they have the same covariance, i.e., N(µ1,Σ) and N(µ2,Σ), and
estimate Σ accordingly. Such estimation requires proper normalization of the data

Figure: The “training data” (black dots) were selected from a quadratic function plus Gaussian noise, i.e,
f(x) = ax2 + bx+ c+ ε where p(ε) ≈ N(0, σ2). The 10th degree polynomial shown fits the data perfectly, but
we desire instead the second-order function f(x), since it would lead to better predictions for few samples.
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Problem of Dimensionality

� All of the commonly used classifiers can suffer from the curse of dimensionality.

� While an exact relationship between the probability of error, the number of training
samples, the number of features, and the number of parameters is very difficult to
establish, some guidelines have been suggested.

� It is generally accepted that using at least ten times as many training samples per
class as the number of features (n/d > 10) is a good practice.
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Feature/Dimensionality Reduction
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Component Analysis and Discriminants

� One way of coping with the problem of high dimensionality is to reduce the
dimensionality by combining features.

� Issues in feature/dimensionality reduction:
� Linear vs. non-linear transformations.
� Use of class labels or not (depends on the availability of training data).

� Linear combinations are particularly attractive because they are simple to compute
and are analytically tractable.

� Linear methods project the high-dimensional data onto a lower dimensional space.
� Advantages of these projections include

� reduced complexity in estimation and classification,
� ability to visually examine the multivariate data in two or three dimensions.
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Component Analysis and Discriminants

� Given x ∈ Rd, the goal is to find a linear transformation A that gives y = ATx,
y ∈ Rd′ where d′ < d.

� Two classical approaches for finding optimal linear transformations are:
� Principal Components Analysis (PCA): Seeks a projection that best represents the data

in a least-squares sense.

� Multiple Discriminant Analysis (MDA): Seeks a projection that best separates the data
in a least-squares sense.
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Principal Component Analysis
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Principal Component Analysis

� Given x1, x2, . . . , xn ∈ Rd, the goal is to find a d′-dimensional subspace where the
reconstruction error of xi in this subspace is minimized.

� The squared-error criterion function J0(x0) by

J0(x0) =

n∑

k=1

‖x0 − xk‖2

and seek the value of x0 that minimizes J0
� It is simple to show that the solution to this problem is given by x0 = m, where m

is the sample mean.

m =
1

n

n∑

k=1

xk
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Principal Component Analysis

� This can be easily verified by writing

J0(x0) =

n∑
k=1

‖(x0 −m)− (xk −m)‖2

=

n∑
k=1

‖(x0 −m)‖2−2
n∑

k=1

(x0 −m)T (xk −m)+

n∑
k=1

‖(xk −m)‖2

=
n∑

k=1

‖(x0 −m)‖2−2(x0 −m)T
n∑

k=1

(xk −m)+
n∑

k=1

‖(xk −m)‖2

=
n∑

k=1

‖(x0 −m)‖2+
n∑

k=1

‖(xk −m)‖2︸ ︷︷ ︸
independent of x0

� Since the second sum is independent of x0, So the above expression is obviously
minimized by the choice of x0 = m.
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Principal Component Analysis

� The sample mean is a zero-dimensional representation of the data set. It is simple,
but it does not reveal any of the variability in the data.

� One-dimensional representation by projecting the data onto a line running through
the sample mean.

� Let e be a unit vector in the direction of the line. Then equation of line will be

x = m + ae

where a is any real value, corresponds to the distance of any point x form the mean
m.

� If xk = m + ake, then we can find optimal set of coefficients ak by minimizing the
squared-error criterion function.
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Principal Component Analysis

� Squared-error criterion function

J1(a1, a2, . . . , an, e) =
n∑

k=1

‖(m + ake)− xk‖2

=
n∑

k=1

‖ake− (xk −m)‖2

=

n∑
k=1

a2k‖e‖2 − 2

n∑
k=1

ake
T (xk −m) +

n∑
k=1

‖(xk −m)‖2

� Recognize that ||e|| = 1, partially differentiating with respect to ak, and setting the
derivative to zero, we obtain

ak = eT (xk −m)

� Geometrically, this result merely says that we obtain a least-squares solution by
projecting the vector xk onto the line in the direction of e that passes through the
sample mean.
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Principal Component Analysis

� The solution to the problem involves the scatter matrix S defined by

S =
n∑

k=1

(xk −m)(xk −m)T

� Scatter matrix is n times the sample covariance matrix.
� Substitute ak in the cost function

J1(e) =

n∑
k=1

a2k − 2
n∑

k=1

a2k +
n∑

k=1

‖xk −m‖2

= −
n∑

k=1

[eT (xk −m)]
2
+

n∑
k=1

‖xk −m‖2

= −
n∑

k=1

eT (xk −m)(xk −m)T e +
n∑

k=1

‖xk −m‖2

= −eTSe +
n∑

k=1

‖xk −m‖2
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Principal Component Analysis

� So the resulting cost function

J1(e) = −eTSe +
n∑

k=1

‖xk −m‖2

� Use Lagrange multipliers to maximize eTSe subject to the constraint that ‖e‖ = 1.

� Letting λ be the undetermined multiplier, we differentiate

u = eTSe− λ(eT e− 1)

∂u

∂e
= 2Se− 2λe

Se = λe

� In particular, because eTSe = λeT e = λ, it follows that to maximize eTSe, so select the eigenvector
corresponding to the largest eigenvalue of the scatter matrix.
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Principal Component Analysis

� To find the best one-dimensional projection of the data (best in the
least-sum-of-squared-error sense), we project the data onto a line through the
sample mean in the direction of the eigenvector of the scatter matrix having the
largest eigenvalue.

� This result can be readily extended from 1-D to a d′-D projection.

x = m +

d′∑

i=1

aiei

where d′ ≤ d.
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Principal Component Analysis

� It is not difficult to show that the criterion function

Jd′ =

n∑
k=1

∥∥∥∥∥∥
m+

d′∑
i=1

akiei

− xk

∥∥∥∥∥∥
2

is minimized when the vector e1, e2, . . . , ed′ are the d′ eigenvector of the scatter
matrix having the largest eigenvalues.

� Because the scatter matrix is real and symmetric, these eigenvectors are orthogonal.

� The coefficients ai are the components of x in that basis, and are the principal
components.
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Principal Component Analysis

� Given x1, x2, . . . , xn ∈ Rd, the goal is to find a d′-dimensional subspace where the
reconstruction error of xi in this subspace is minimized.

� The squared error criterion function J0(x0) can be minimized by selecting x0 = m,
where m is the sample mean.

� The sample mean is a zero-dimensional representation of the data set. It is simple,
but it does not reveal any of the variability in the data.

� We must consider at least one-dimensional representation of data by choosing

x = m + ae

and compute the optimal value of a such that the squared error criterion function
J1 is minimum.

� We obtained the solution as
ak = eT (xk −m)
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Principal Component Analysis

� Given x1, x2, . . . , xn ∈ Rd, the goal is to find a d′-dimensional subspace where the
reconstruction error of xi in this subspace is minimized.

� The criterion function for the reconstruction error can be defined in the least
squares sense as

Jd′ =
n∑

k=1

∥∥∥∥∥

(
m +

d′∑

i=1

akiei

)
− xk

∥∥∥∥∥

2

where e1, e2, . . . , ed′ are the bases for the subspace (stored as the columns of A)
and ai is the projection of xi onto that subspace.
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Principal Component Analysis

� It can be shown that Jd′ is minimized when e1, e2, . . . , ed′ are eigenvectors
corresponding to first d′ largest eigenvalues of scatter matrix.

S =

n∑

k=1

(xk −m)(xk −m)T

� The coefficients a = (ai, . . . , ad′)
T are called the principal components.

� When the eigenvectors are sorted in descending order of the corresponding
eigenvalues, the greatest variance of the data lies on the first principal component,
the second greatest variance on the second component, and so on.

24/54 Kundan Kumar Pattern Classification



Dimensionality Problem Component Analysis PCA LDA Feature Selection

Example to be solved

Question: Given the following sets of feature vector belonging to two classes ω1 and ω2 which is
Gaussian distributed. {(

1
2

)
,

(
3
4

)
,

(
4
3

)
,

(
5
5

)
,

(
7
5

)}
∈ ω1{(

6
2

)
,

(
9
4

)
,

(
7
3

)
,

(
11
4

)
,

(
13
6

)}
∈ ω2

Find out the best direction of the line of projection that best represent the data in one-dimensional
feature space.
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Examples: Iris dataset representation

� ”Iris” dataset is very famous dataset used for data analysis problems (classification,
feature reduction, and many more)

� Available on the UCI machine learning repository
https://archive.ics.uci.edu/ml/datasets/Iris.

� The iris dataset contains measurements for 150 iris flowers from three different
species.
� Iris-setosa (n1 = 50)
� Iris-versicolor (n2 = 50)
� Iris-virginica (n3 = 50)

� And the four features of in Iris dataset are:
� sepal length in cm
� sepal width in cm
� petal length in cm
� petal width in cm
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Examples: Iris data representation
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Figure: Scatter plot of the iris data. Diagonal cells show the histogram for each feature. Other cells show
scatters of pairs of features x1, x2, x3, x4 in top-down and left-right order. Red, green and blue points represent
samples for the setosa, versicolor and virginica classes, respectively.
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Examples: Iris data representation
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Figure: Scatter plot of the projection of the iris data onto the first two and the first three principal axes.
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Linear Discriminant Analysis
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Fisher Linear Discriminant

� PCA seeks directions that are efficient for representation, discriminant analysis
seeks directions that are efficient for discrimination.

4.10. *FISHER LINEAR DISCRIMINANT 45
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Figure 4.27: Projection of samples onto two different lines. The figure on the right
shows greater separation between the red and black projected points.

=
1

ni

∑

y∈Yi

wtx = wtmi. (74)

and is simply the projection of mi.
It follows that the distance between the projected means is

|m̃1 − m̃2| = |wt(m1 −m2)|, (75)

and that we can make this difference as large as we wish merely by scaling w. Of
course, to obtain good separation of the projected data we really want the difference
between the means to be large relative to some measure of the standard deviations for
each class. Rather than forming sample variances, we define the scatter for projected scatter
samples labelled ωi by

s̃2i =
∑

y∈Yi

(y − m̃i)
2. (76)

Thus, (1/n)(s̃21 + s̃22) is an estimate of the variance of the pooled data, and s̃21 + s̃22
is called the total within-class scatter of the projected samples. The Fisher linear within-

class
scatter

discriminant employs that linear function wtx for which the criterion function

J(w) =
|m̃1 − m̃2|2
s̃21 + s̃22

(77)

is maximum (and independent of ‖w‖). While the w maximizing J(·) leads to the
best separation between the two projected sets (in the sense just described), we will
also need a threshold criterion before we have a true classifier. We first consider how
to find the optimal w, and later turn to the issue of thresholds.

To obtain J(·) as an explicit function of w, we define the scatter matrices Si and scatter
matricesSW by

Si =
∑

x∈Di

(x−mi)(x−mi)
t (78)

and

Figure: Projection of the same set of samples onto two different lines in the directions marked as w. The
figure on the right shows greater separation between the red and black projected points
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Fisher Linear Discriminant

� Suppose x1, x2, . . . , xn ∈ Rd are divided
into two subsets D1 (n1 samples) and
D2 (n2 samples) corresponding to the
classes ω1 and ω2 respectively, the goal
is to find a projection onto a line
defined as

y = wTx

such that the points corresponding to
D1 and D2 are well separated.

� A corresponding set of n samples
y1, y2, . . . , yn divided into the subset Y1
and Y2.
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Figure 4.27: Projection of samples onto two different lines. The figure on the right
shows greater separation between the red and black projected points.

=
1

ni

∑

y∈Yi

wtx = wtmi. (74)

and is simply the projection of mi.
It follows that the distance between the projected means is

|m̃1 − m̃2| = |wt(m1 −m2)|, (75)

and that we can make this difference as large as we wish merely by scaling w. Of
course, to obtain good separation of the projected data we really want the difference
between the means to be large relative to some measure of the standard deviations for
each class. Rather than forming sample variances, we define the scatter for projected scatter
samples labelled ωi by

s̃2i =
∑

y∈Yi

(y − m̃i)
2. (76)

Thus, (1/n)(s̃21 + s̃22) is an estimate of the variance of the pooled data, and s̃21 + s̃22
is called the total within-class scatter of the projected samples. The Fisher linear within-

class
scatter

discriminant employs that linear function wtx for which the criterion function

J(w) =
|m̃1 − m̃2|2
s̃21 + s̃22

(77)

is maximum (and independent of ‖w‖). While the w maximizing J(·) leads to the
best separation between the two projected sets (in the sense just described), we will
also need a threshold criterion before we have a true classifier. We first consider how
to find the optimal w, and later turn to the issue of thresholds.

To obtain J(·) as an explicit function of w, we define the scatter matrices Si and scatter
matricesSW by

Si =
∑

x∈Di

(x−mi)(x−mi)
t (78)

and
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Fisher Linear Discriminant

� The criterion function for the best separation can be defined as

4.10. *FISHER LINEAR DISCRIMINANT 45
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Figure 4.27: Projection of samples onto two different lines. The figure on the right
shows greater separation between the red and black projected points.

=
1

ni

∑

y∈Yi

wtx = wtmi. (74)

and is simply the projection of mi.
It follows that the distance between the projected means is

|m̃1 − m̃2| = |wt(m1 −m2)|, (75)

and that we can make this difference as large as we wish merely by scaling w. Of
course, to obtain good separation of the projected data we really want the difference
between the means to be large relative to some measure of the standard deviations for
each class. Rather than forming sample variances, we define the scatter for projected scatter
samples labelled ωi by

s̃2i =
∑

y∈Yi

(y − m̃i)
2. (76)

Thus, (1/n)(s̃21 + s̃22) is an estimate of the variance of the pooled data, and s̃21 + s̃22
is called the total within-class scatter of the projected samples. The Fisher linear within-

class
scatter

discriminant employs that linear function wtx for which the criterion function

J(w) =
|m̃1 − m̃2|2
s̃21 + s̃22

(77)

is maximum (and independent of ‖w‖). While the w maximizing J(·) leads to the
best separation between the two projected sets (in the sense just described), we will
also need a threshold criterion before we have a true classifier. We first consider how
to find the optimal w, and later turn to the issue of thresholds.

To obtain J(·) as an explicit function of w, we define the scatter matrices Si and scatter
matricesSW by

Si =
∑

x∈Di

(x−mi)(x−mi)
t (78)

and

where, m̃i is the sample mean and s̃2i is the scatter for the projected samples
labeled ωi, given as

44 CHAPTER 4. NONPARAMETRIC TECHNIQUES

distant sample. Although this example is rudimentary, similar considerations arise
in the multidimensional case even when more sophisticated expansions are used, and
the procedure is most attractive when the window size is relatively large.

4.10 Fisher Linear Discriminant

One of the recurring problems encountered in applying statistical techniques to pat-
tern recognition problems has been called the “curse of dimensionality.” Procedures
that are analytically or computationally manageable in low-dimensional spaces can be-
come completely impractical in a space of 50 or 100 dimensions. Pure fuzzy methods
are particularly ill-suited to such high-dimensional problems since it is implausible
that the designer’s linguistic intuition extends to such spaces. Thus, various tech-
niques have been developed for reducing the dimensionality of the feature space in
the hope of obtaining a more manageable problem.

We can reduce the dimensionality from d dimensions to one dimension if we merely
project the d-dimensional data onto a line. Of course, even if the samples formed
well-separated, compact clusters in d-space, projection onto an arbitrary line will
usually produce a confused mixture of samples from all of the classes, and thus poor
recognition performance. However, by moving the line around, we might be able to
find an orientation for which the projected samples are well separated. This is exactly
the goal of classical discriminant analysis.

Suppose that we have a set of n d-dimensional samples x1, ...,xn, n1 in the subset
D1 labelled ω1 and n2 in the subset D2 labelled ω2. If we form a linear combination
of the components of x, we obtain the scalar dot product

y = wtx (72)

and a corresponding set of n samples y1, ..., yn divided into the subsets Y1 and Y2.
Geometrically, if ‖w‖ = 1, each yi is the projection of the corresponding xi onto a
line in the direction of w. Actually, the magnitude of w is of no real significance,
since it merely scales y. The direction of w is important, however. If we imagine
that the samples labelled ω1 fall more or less into one cluster while those labelled ω2

fall in another, we want the projections falling onto the line to be well separated, not
thoroughly intermingled. Figure 4.27 illustrates the effect of choosing two different
values for w for a two-dimensional example. It should be abundantly clear that if the
original distributions are multimodal and highly overlapping, even the “best” w is
unlikely to provide adequate seaparation, and thus this method will be of little use.

We now turn to the matter of finding the best such direction w, one we hope will
enable accurate classification. A measure of the separation between the projected
points is the difference of the sample means. If mi is the d-dimensional sample mean
given by

mi =
1

ni

∑

x∈Di

x, (73)

then the sample mean for the projected points is given by

m̃i =
1

ni

∑

y∈Yi

y
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Figure 4.27: Projection of samples onto two different lines. The figure on the right
shows greater separation between the red and black projected points.

=
1

ni

∑

y∈Yi

wtx = wtmi. (74)

and is simply the projection of mi.
It follows that the distance between the projected means is

|m̃1 − m̃2| = |wt(m1 −m2)|, (75)

and that we can make this difference as large as we wish merely by scaling w. Of
course, to obtain good separation of the projected data we really want the difference
between the means to be large relative to some measure of the standard deviations for
each class. Rather than forming sample variances, we define the scatter for projected scatter
samples labelled ωi by

s̃2i =
∑

y∈Yi

(y − m̃i)
2. (76)

Thus, (1/n)(s̃21 + s̃22) is an estimate of the variance of the pooled data, and s̃21 + s̃22
is called the total within-class scatter of the projected samples. The Fisher linear within-

class
scatter

discriminant employs that linear function wtx for which the criterion function

J(w) =
|m̃1 − m̃2|2
s̃21 + s̃22

(77)

is maximum (and independent of ‖w‖). While the w maximizing J(·) leads to the
best separation between the two projected sets (in the sense just described), we will
also need a threshold criterion before we have a true classifier. We first consider how
to find the optimal w, and later turn to the issue of thresholds.

To obtain J(·) as an explicit function of w, we define the scatter matrices Si and scatter
matricesSW by

Si =
∑

x∈Di

(x−mi)(x−mi)
t (78)

and

� This is called the Fisher’s linear discriminant with the geometric interpretation that
the best projection makes the difference between the means as large as possible
relative to the variance.
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� To compute the optimal w, we define the scatter matrices Si

Si =
∑

x∈Di

(x−mi) (x−mi)
t

where,

mi =
1

ni

∑

x∈Di

x

� The within-class scatter matrix SW

SW = S1 + S2

and the between-class scatter matrix SB

SB = (m1 −m2) (m1 −m2)
t
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� Then, the criterion function becomes

J(w) =
|m̃1 − m̃2|2
s̃21 + s̃22

=
wTSBw

wTSWw

This expression is well known in mathematical physics as the generalized Rayleigh
quotient.

� A vector w that maximizes J(·) must satisfy

SBw = λSWw

SW
−1SBw = λw

� In this particular case, it is unnecessary to solve for the eigenvalues and eigenvectors
of SW

−1SB due to the fact that SBw is always in the direction of m1 −m2
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� So we can find the immediate solution as

w = S−1W (m1 −m2)

� Note that, SW is symmetric and positive semidefinite, and it is usually nonsingular
if n > d. SB is also symmetric and positive semidefinite, but its rank is at most 1.

� Thus, we have obtained w for Fisher’s linear discriminant – the linear function
yielding the maximum ratio of between-class scatter to within-class scatter.
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Example to be solved

Question: Given the following sets of feature vector belonging to two classes ω1 and ω2 which is
Gaussian distributed. {(

1
2

)
,

(
3
4

)
,

(
4
3

)
,

(
5
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)
,

(
7
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)}
∈ ω1{(
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)
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)
,
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7
3

)
,

(
11
4

)
,

(
13
6

)}
∈ ω2

Find out the best direction of the line of projection that best separates the data in one-dimensional
feature space.
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W1

W2

Figure 4.28: Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors w1 and w2. Informally, multiple discrimi-
nant methods seek the optimum such subspace, i.e., the one with the greatest sepa-
ration of the projected distributions for a given total within-scatter matrix, here as
associated with w1.

(SB − λiSW )wi = 0 (109)

directly for the eigenvectors wi. Because SB is the sum of c matrices of rank one or
less, and because only c−1 of these are independent, SB is of rank c−1 or less. Thus,
no more than c − 1 of the eigenvalues are nonzero, and the desired weight vectors
correspond to these nonzero eigenvalues. If the within-class scatter is isotropic, the
eigenvectors are merely the eigenvectors of SB , and the eigenvectors with nonzero
eigenvalues span the space spanned by the vectors mi −m. In this special case the
columns of W can be found simply by applying the Gram-Schmidt orthonormalization
procedure to the c − 1 vectors mi −m, i = 1, ..., c − 1. Finally, we observe that in
general the solution for W is not unique. The allowable transformations include
rotating and scaling the axes in various ways. These are all linear transformations
from a (c− 1)-dimensional space to a (c− 1)-dimensional space, however, and do not
change things in any significant way; in particular, they leave the criterion function
J(W) invariant and the classifier unchanged.

If we have very little data, we would tend to project to a subspace of low dimen-
sion, while if there is more data, we can use a higher dimension, as we shall explore
in Chap. ??. Once we have projected the distributions onto the optimal subspace
(defined as above), we can use the methods of Chapt. ?? to create our full classifier.

As in the two-class case, multiple discriminant analysis primarily provides a reason-
able way of reducing the dimensionality of the problem. Parametric or nonparametric
techniques that might not have been feasible in the original space may work well in
the lower-dimensional space. In particular, it may be possible to estimate separate
covariance matrices for each class and use the general multivariate normal assump-
tion after the transformation where this could not be done with the original data. In
general, if the transformation causes some unnecessary overlapping of the data and
increases the theoretically achievable error rate, then the problem of classifying the
data still remains. However, there are other ways to reduce the dimensionality of

Figure: Three-dimensional distributions are projected onto two-dimensional subspaces, described by a normal
vectors W1 and W2.
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� The within-class scatter matrix

4.11. *MULTIPLE DISCRIMINANT ANALYSIS 47

scale factor for w is immaterial, we can immediately write the solution for the w that
optimizes J(·):

w = S−1
W (m1 −m2). (87)

Thus, we have obtained w for Fisher’s linear discriminant — the linear function
yielding the maximum ratio of between-class scatter to within-class scatter. (The
solution w given by Eq. 87 is sometimes called the canonical variate.) Thus the
classification has been converted from a d-dimensional problem to a hopefully more
manageable one-dimensional one. This mapping is many-to-one, and in theory can not
possibly reduce the minimum achievable error rate if we have a very large training set.
In general, one is willing to sacrifice some of the theoretically attainable performance
for the advantages of working in one dimension. All that remains is to find the
threshold, i.e., the point along the one-dimensional subspace separating the projected
points.

When the conditional densities p(x|ωi) are multivariate normal with equal co-
variance matrices Σ, we can calculate the threshold directly. In that case we recall
(Chap. ??, Sect. ??) that the optimal decision boundary has the equation

wtx + w0 = 0 (88)

where

w = Σ−1(µ1 − µ2), (89)

and where w0 is a constant involving w and the prior probabilities. If we use sample
means and the sample covariance matrix to estimate µi and Σ, we obtain a vector
in the same direction as the w of Eq. 89 that maximized J(·). Thus, for the normal,
equal-covariance case, the optimal decision rule is merely to decide ω1 if Fisher’s linear
discriminant exceed some threshold, and to decide ω2 otherwise. More generally, if
we smooth the projected data, or fit it with a univariate Gaussian, we then should
choose w0 where the posteriors in the one dimensional distributions are equal.

The computational complexity of finding the optimal w for the Fisher linear dis-
criminant (Eq. 87) is dominated by the calculation of the within-category total scatter
and its inverse, an O(d2n) calculation.

4.11 Multiple Discriminant Analysis

For the c-class problem, the natural generalization of Fisher’s linear discriminant
involves c − 1 discriminant functions. Thus, the projection is from a d-dimensional
space to a (c − 1)-dimensional space, and it is tacitly assumed that d ≥ c. The
generalization for the within-class scatter matrix is obvious:

SW =

c∑

i=1

Si (90)

where, as before,

Si =
∑

x∈Di

(x−mi)(x−mi)
t (91)

and

where
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mi =
1

ni

∑

x∈Di

x. (92)

The proper generalization for SB is not quite so obvious. Suppose that we define
a total mean vector m and a total scatter matrix ST bytotal

mean
vector

total
scatter
matrix

m =
1

n

∑

x

x =
1

n

c∑

i=1

nimi (93)

and

ST =
∑

x

(x−m)(x−m)t. (94)

Then it follows that

ST =

c∑

i=1

∑

x∈Di

(x−mi + mi −m)(x−mi + mi −m)t

=

c∑

i=1

∑

x∈Di

(x−mi)(x−mi)
t +

c∑

i=1

∑

x∈Di

(mi −m)(mi −m)t

= SW +

c∑

i=1

ni(mi −m)(mi −m)t. (95)

It is natural to define this second term as a general between-class scatter matrix,
so that the total scatter is the sum of the within-class scatter and the between-class
scatter:

SB =

c∑

i=1

ni(mi −m)(mi −m)t (96)

and

ST = SW + SB . (97)

If we check the two-class case, we find that the resulting between-class scatter matrix
is n1n2/n times our previous definition.∗

The projection from a d-dimensional space to a (c − 1)-dimensional space is ac-
complished by c− 1 discriminant functions

yi = wt
ix i = 1, ..., c− 1. (98)

If the yi are viewed as components of a vector y and the weight vectors wi are viewed
as the columns of a d-by-(c − 1) matrix W, then the projection can be written as a
single matrix equation

y = Wtx. (99)

∗ We could redefine SB for the two-class case to obtain complete consistency, but there should be
no misunderstanding of our usage.

� The proper generalization for SB is not quite so obvious.

� Suppose that we define a total mean vector m and a total scatter matrix ST by
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� Then we can write
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� Therefore,
ST = SW + SB

where
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� The projection form a d-dimensional space to a (c− 1)-dimensional space is
accomplished by c− 1 discriminant functions
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∗ We could redefine SB for the two-class case to obtain complete consistency, but there should be
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� If the yi are viewed as components of a vector y and the weight vector wi are
viewed as the columns of a d-by-(c− 1) matrix W, then the projection can be
written as a single matrix equation
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and

ST = SW + SB . (97)

If we check the two-class case, we find that the resulting between-class scatter matrix
is n1n2/n times our previous definition.∗

The projection from a d-dimensional space to a (c − 1)-dimensional space is ac-
complished by c− 1 discriminant functions

yi = wt
ix i = 1, ..., c− 1. (98)

If the yi are viewed as components of a vector y and the weight vectors wi are viewed
as the columns of a d-by-(c − 1) matrix W, then the projection can be written as a
single matrix equation

y = Wtx. (99)

∗ We could redefine SB for the two-class case to obtain complete consistency, but there should be
no misunderstanding of our usage.
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Multiple Discriminant Analysis

� The samples x1, x2, . . . , xn project to a corresponding set of samples y1, y2, . . . , yn,
which can be described by their own mean vectors and scatter matrices. Thus
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The samples x1, ...,xn project to a corresponding set of samples y1, ...,yn, which
can be described by their own mean vectors and scatter matrices. Thus, if we define

m̃i =
1

ni

∑

y∈Yi

y (100)

m̃ =
1

n

c∑

i=1

nim̃i (101)

S̃W =

c∑

i=1

∑

y∈Yi

(y − m̃i)(y − m̃i)
t (102)

and

S̃B =
c∑

i=1

ni(m̃i − m̃)(m̃i − m̃)t, (103)

it is a straightforward matter to show that

S̃W = WtSWW (104)

and

S̃B = WtSBW. (105)

These equations show how the within-class and between-class scatter matrices are
transformed by the projection to the lower dimensional space (Fig. 4.28). What we
seek is a transformation matrix W that in some sense maximizes the ratio of the
between-class scatter to the within-class scatter. A simple scalar measure of scatter
is the determinant of the scatter matrix. The determinant is the product of the
eigenvalues, and hence is the product of the “variances” in the principal directions,
thereby measuring the square of the hyperellipsoidal scattering volume. Using this
measure, we obtain the criterion function

J(W) =
|S̃B |
|S̃W |

=
|WtSBW|
|WtSWW| . (106)

The problem of finding a rectangular matrix W that maximizes J(·) is tricky,
though fortunately it turns out that the solution is relatively simple. The columns of
an optimal W are the generalized eigenvectors that correspond to the largest eigen-
values in

SBwi = λiSWwi. (107)

A few observations about this solution are in order. First, if SW is non-singular,
this can be converted to a conventional eigenvalue problem as before. However, this
is actually undesirable, since it requires an unnecessary computation of the inverse of
SW . Instead, one can find the eigenvalues as the roots of the characteristic polynomial

|SB − λiSW | = 0 (108)

and then solve
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Multiple Discriminant Analysis

� It is a straightforward matter to show that
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The samples x1, ...,xn project to a corresponding set of samples y1, ...,yn, which
can be described by their own mean vectors and scatter matrices. Thus, if we define

m̃i =
1

ni

∑

y∈Yi

y (100)

m̃ =
1

n

c∑

i=1

nim̃i (101)

S̃W =

c∑

i=1

∑

y∈Yi

(y − m̃i)(y − m̃i)
t (102)

and

S̃B =
c∑

i=1

ni(m̃i − m̃)(m̃i − m̃)t, (103)

it is a straightforward matter to show that

S̃W = WtSWW (104)

and

S̃B = WtSBW. (105)

These equations show how the within-class and between-class scatter matrices are
transformed by the projection to the lower dimensional space (Fig. 4.28). What we
seek is a transformation matrix W that in some sense maximizes the ratio of the
between-class scatter to the within-class scatter. A simple scalar measure of scatter
is the determinant of the scatter matrix. The determinant is the product of the
eigenvalues, and hence is the product of the “variances” in the principal directions,
thereby measuring the square of the hyperellipsoidal scattering volume. Using this
measure, we obtain the criterion function

J(W) =
|S̃B |
|S̃W |

=
|WtSBW|
|WtSWW| . (106)

The problem of finding a rectangular matrix W that maximizes J(·) is tricky,
though fortunately it turns out that the solution is relatively simple. The columns of
an optimal W are the generalized eigenvectors that correspond to the largest eigen-
values in

SBwi = λiSWwi. (107)

A few observations about this solution are in order. First, if SW is non-singular,
this can be converted to a conventional eigenvalue problem as before. However, this
is actually undesirable, since it requires an unnecessary computation of the inverse of
SW . Instead, one can find the eigenvalues as the roots of the characteristic polynomial

|SB − λiSW | = 0 (108)

and then solve

� These equations show how the within-class and between-class scatter matrices are
transformed by the projection to the lower dimensional space.
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Multiple Discriminant Analysis: Solution

� The criterion function
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The samples x1, ...,xn project to a corresponding set of samples y1, ...,yn, which
can be described by their own mean vectors and scatter matrices. Thus, if we define

m̃i =
1

ni

∑

y∈Yi

y (100)

m̃ =
1

n

c∑

i=1

nim̃i (101)

S̃W =

c∑

i=1

∑

y∈Yi

(y − m̃i)(y − m̃i)
t (102)

and

S̃B =
c∑

i=1

ni(m̃i − m̃)(m̃i − m̃)t, (103)

it is a straightforward matter to show that

S̃W = WtSWW (104)

and

S̃B = WtSBW. (105)

These equations show how the within-class and between-class scatter matrices are
transformed by the projection to the lower dimensional space (Fig. 4.28). What we
seek is a transformation matrix W that in some sense maximizes the ratio of the
between-class scatter to the within-class scatter. A simple scalar measure of scatter
is the determinant of the scatter matrix. The determinant is the product of the
eigenvalues, and hence is the product of the “variances” in the principal directions,
thereby measuring the square of the hyperellipsoidal scattering volume. Using this
measure, we obtain the criterion function

J(W) =
|S̃B |
|S̃W |

=
|WtSBW|
|WtSWW| . (106)

The problem of finding a rectangular matrix W that maximizes J(·) is tricky,
though fortunately it turns out that the solution is relatively simple. The columns of
an optimal W are the generalized eigenvectors that correspond to the largest eigen-
values in

SBwi = λiSWwi. (107)

A few observations about this solution are in order. First, if SW is non-singular,
this can be converted to a conventional eigenvalue problem as before. However, this
is actually undesirable, since it requires an unnecessary computation of the inverse of
SW . Instead, one can find the eigenvalues as the roots of the characteristic polynomial

|SB − λiSW | = 0 (108)

and then solve

the problem of finding a rectangular matrix W that maximized J(·).

� The columns of an optimal W are the generalized eigenvectors that correspond to
the largest eigenvalues in

50 CHAPTER 4. NONPARAMETRIC TECHNIQUES

W1

W2

Figure 4.28: Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors w1 and w2. Informally, multiple discrimi-
nant methods seek the optimum such subspace, i.e., the one with the greatest sepa-
ration of the projected distributions for a given total within-scatter matrix, here as
associated with w1.

(SB − λiSW )wi = 0 (109)

directly for the eigenvectors wi. Because SB is the sum of c matrices of rank one or
less, and because only c−1 of these are independent, SB is of rank c−1 or less. Thus,
no more than c − 1 of the eigenvalues are nonzero, and the desired weight vectors
correspond to these nonzero eigenvalues. If the within-class scatter is isotropic, the
eigenvectors are merely the eigenvectors of SB , and the eigenvectors with nonzero
eigenvalues span the space spanned by the vectors mi −m. In this special case the
columns of W can be found simply by applying the Gram-Schmidt orthonormalization
procedure to the c − 1 vectors mi −m, i = 1, ..., c − 1. Finally, we observe that in
general the solution for W is not unique. The allowable transformations include
rotating and scaling the axes in various ways. These are all linear transformations
from a (c− 1)-dimensional space to a (c− 1)-dimensional space, however, and do not
change things in any significant way; in particular, they leave the criterion function
J(W) invariant and the classifier unchanged.

If we have very little data, we would tend to project to a subspace of low dimen-
sion, while if there is more data, we can use a higher dimension, as we shall explore
in Chap. ??. Once we have projected the distributions onto the optimal subspace
(defined as above), we can use the methods of Chapt. ?? to create our full classifier.

As in the two-class case, multiple discriminant analysis primarily provides a reason-
able way of reducing the dimensionality of the problem. Parametric or nonparametric
techniques that might not have been feasible in the original space may work well in
the lower-dimensional space. In particular, it may be possible to estimate separate
covariance matrices for each class and use the general multivariate normal assump-
tion after the transformation where this could not be done with the original data. In
general, if the transformation causes some unnecessary overlapping of the data and
increases the theoretically achievable error rate, then the problem of classifying the
data still remains. However, there are other ways to reduce the dimensionality of
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Multiple Discriminant Analysis: Observation

50 CHAPTER 4. NONPARAMETRIC TECHNIQUES

W1

W2

Figure 4.28: Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors w1 and w2. Informally, multiple discrimi-
nant methods seek the optimum such subspace, i.e., the one with the greatest sepa-
ration of the projected distributions for a given total within-scatter matrix, here as
associated with w1.

(SB − λiSW )wi = 0 (109)

directly for the eigenvectors wi. Because SB is the sum of c matrices of rank one or
less, and because only c−1 of these are independent, SB is of rank c−1 or less. Thus,
no more than c − 1 of the eigenvalues are nonzero, and the desired weight vectors
correspond to these nonzero eigenvalues. If the within-class scatter is isotropic, the
eigenvectors are merely the eigenvectors of SB , and the eigenvectors with nonzero
eigenvalues span the space spanned by the vectors mi −m. In this special case the
columns of W can be found simply by applying the Gram-Schmidt orthonormalization
procedure to the c − 1 vectors mi −m, i = 1, ..., c − 1. Finally, we observe that in
general the solution for W is not unique. The allowable transformations include
rotating and scaling the axes in various ways. These are all linear transformations
from a (c− 1)-dimensional space to a (c− 1)-dimensional space, however, and do not
change things in any significant way; in particular, they leave the criterion function
J(W) invariant and the classifier unchanged.

If we have very little data, we would tend to project to a subspace of low dimen-
sion, while if there is more data, we can use a higher dimension, as we shall explore
in Chap. ??. Once we have projected the distributions onto the optimal subspace
(defined as above), we can use the methods of Chapt. ?? to create our full classifier.

As in the two-class case, multiple discriminant analysis primarily provides a reason-
able way of reducing the dimensionality of the problem. Parametric or nonparametric
techniques that might not have been feasible in the original space may work well in
the lower-dimensional space. In particular, it may be possible to estimate separate
covariance matrices for each class and use the general multivariate normal assump-
tion after the transformation where this could not be done with the original data. In
general, if the transformation causes some unnecessary overlapping of the data and
increases the theoretically achievable error rate, then the problem of classifying the
data still remains. However, there are other ways to reduce the dimensionality of

� If SW is nonsingular, this can be converted to a conventional eigenvalue problem as
before.

� Computation of the inverse of SW is expensive.

� Instead, one can find the eigenvalues as the roots of the characteristic polynomial
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The samples x1, ...,xn project to a corresponding set of samples y1, ...,yn, which
can be described by their own mean vectors and scatter matrices. Thus, if we define

m̃i =
1

ni

∑

y∈Yi

y (100)

m̃ =
1

n

c∑

i=1

nim̃i (101)

S̃W =

c∑

i=1

∑

y∈Yi

(y − m̃i)(y − m̃i)
t (102)

and

S̃B =
c∑

i=1

ni(m̃i − m̃)(m̃i − m̃)t, (103)

it is a straightforward matter to show that

S̃W = WtSWW (104)

and

S̃B = WtSBW. (105)

These equations show how the within-class and between-class scatter matrices are
transformed by the projection to the lower dimensional space (Fig. 4.28). What we
seek is a transformation matrix W that in some sense maximizes the ratio of the
between-class scatter to the within-class scatter. A simple scalar measure of scatter
is the determinant of the scatter matrix. The determinant is the product of the
eigenvalues, and hence is the product of the “variances” in the principal directions,
thereby measuring the square of the hyperellipsoidal scattering volume. Using this
measure, we obtain the criterion function

J(W) =
|S̃B |
|S̃W |

=
|WtSBW|
|WtSWW| . (106)

The problem of finding a rectangular matrix W that maximizes J(·) is tricky,
though fortunately it turns out that the solution is relatively simple. The columns of
an optimal W are the generalized eigenvectors that correspond to the largest eigen-
values in

SBwi = λiSWwi. (107)

A few observations about this solution are in order. First, if SW is non-singular,
this can be converted to a conventional eigenvalue problem as before. However, this
is actually undesirable, since it requires an unnecessary computation of the inverse of
SW . Instead, one can find the eigenvalues as the roots of the characteristic polynomial

|SB − λiSW | = 0 (108)

and then solve� and then solve
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W2

Figure 4.28: Three three-dimensional distributions are projected onto two-dimensional
subspaces, described by a normal vectors w1 and w2. Informally, multiple discrimi-
nant methods seek the optimum such subspace, i.e., the one with the greatest sepa-
ration of the projected distributions for a given total within-scatter matrix, here as
associated with w1.

(SB − λiSW )wi = 0 (109)

directly for the eigenvectors wi. Because SB is the sum of c matrices of rank one or
less, and because only c−1 of these are independent, SB is of rank c−1 or less. Thus,
no more than c − 1 of the eigenvalues are nonzero, and the desired weight vectors
correspond to these nonzero eigenvalues. If the within-class scatter is isotropic, the
eigenvectors are merely the eigenvectors of SB , and the eigenvectors with nonzero
eigenvalues span the space spanned by the vectors mi −m. In this special case the
columns of W can be found simply by applying the Gram-Schmidt orthonormalization
procedure to the c − 1 vectors mi −m, i = 1, ..., c − 1. Finally, we observe that in
general the solution for W is not unique. The allowable transformations include
rotating and scaling the axes in various ways. These are all linear transformations
from a (c− 1)-dimensional space to a (c− 1)-dimensional space, however, and do not
change things in any significant way; in particular, they leave the criterion function
J(W) invariant and the classifier unchanged.

If we have very little data, we would tend to project to a subspace of low dimen-
sion, while if there is more data, we can use a higher dimension, as we shall explore
in Chap. ??. Once we have projected the distributions onto the optimal subspace
(defined as above), we can use the methods of Chapt. ?? to create our full classifier.

As in the two-class case, multiple discriminant analysis primarily provides a reason-
able way of reducing the dimensionality of the problem. Parametric or nonparametric
techniques that might not have been feasible in the original space may work well in
the lower-dimensional space. In particular, it may be possible to estimate separate
covariance matrices for each class and use the general multivariate normal assump-
tion after the transformation where this could not be done with the original data. In
general, if the transformation causes some unnecessary overlapping of the data and
increases the theoretically achievable error rate, then the problem of classifying the
data still remains. However, there are other ways to reduce the dimensionality of

directly for the eigenvectors wi.
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Feature Selection

� Feature reduction uses a linear or non-linear combination of features.

� An alternative to feature reduction is feature selection that reduces dimensionality
by selecting subsets of existing features.

� Benefits of performing feature selection:
� avoid curse of dimensionality
� reduce the computational cost
� improves accuracy
� avoid overfitting

� The first step in feature selection is to define a criterion function that is often a
function of the classification error.

� Note that, the use of classification error in the criterion function makes feature
selection procedures dependent on the specific classifier used.
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Feature Selection

� The most straightforward approach would require

� examining all

(
d
m

)
possible subsets of size m,

� selecting the subset that performs the best according to the criterion function.

� The number of subsets grows combinatorially, making the exhaustive search
impractical.

� There are two main types of feature selection algorithms:
� Wrapper Feature Selection Methods.
� Filter Feature Selection Methods.
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Examples: Iris data representation
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Figure: Histogram plot of Iris features
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Examples: Iris data representation
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Figure: Scatter plot of the iris data. Off-diagonal cells show scatters of pairs of features x1, x2, x3, x4.
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Feature Selection

� Sequential forward selection:

1. First, the best single feature is selected.
2. Then, pairs of features are formed

using one of the remaining features and
this best feature, and the best pair is
selected.

3. Next, triplets of features are formed
using one of the remaining features and
these two best features, and the best
triplet is selected.

4. This procedure continues until all or a
predefined number of features are
selected.

Examples

56 58 60 62 64 66 68 70 72 74

AERIAL_GABOR1::COARSE0DEG
AERIAL::BAND3

AERIAL_GABOR2::COARSE90DEG
AERIAL::BAND2
AERIAL::BAND1

AERIAL_GABOR2::FINE0DEG
IKONOS3::BAND2

AERIAL_GABOR1::COARSE90DEG
AERIAL_GABOR2::FINE90DEG
AERIAL_GABOR1::FINE90DEG

IKONOS3::BAND1
AERIAL_GABOR2::COARSE0DEG

IKONOS2_GABOR1::COARSE90DEG
IKONOS2_GABOR1::FINE90DEG

IKONOS3::BAND3
IKONOS3::BAND4

IKONOS2_GABOR1::FINE0DEG
IKONOS2_GABOR1::COARSE0DEG

AERIAL_GABOR1::FINE0DEG
IKONOS2_GABOR4::COARSE0DEG

IKONOS2_GABOR4::FINE0DEG
IKONOS2_GABOR4::COARSE90DEG

IKONOS2_GABOR4::FINE90DEG
IKONOS2::BAND4
IKONOS2::BAND2
IKONOS2::BAND3
IKONOS2::BAND1
DEM::ELEVATION

Sequential forward selection

Classification accuracy

Figure 24: Results of sequential forward feature selection for classification of
a satellite image using 28 features. x-axis shows the classification accuracy
(%) and y-axis shows the features added at each iteration (the first iteration is
at the bottom). The highest accuracy value is shown with a star.
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Feature Selection

� Sequential backward selection:
� First, the criterion function is computed

for all d features.
� Then, each feature is deleted one at a

time, the criterion function is computed
for all subsets with d− 1 features, and
the worst feature is discarded.

� Next, each feature among the
remaining d− 1 is deleted one at a
time, and the worst feature is discarded
to form a subset with d− 2 features.

� This procedure continues until one
feature or a predefined number of
features are left.

Examples

54 56 58 60 62 64 66 68 70 72

NONE
DEM::ELEVATION
IKONOS3::BAND3

AERIAL_GABOR1::COARSE90DEG
IKONOS2::BAND1
IKONOS2::BAND3

IKONOS2_GABOR4::FINE90DEG
AERIAL_GABOR2::COARSE0DEG

AERIAL_GABOR1::FINE0DEG
AERIAL_GABOR2::FINE90DEG

IKONOS2_GABOR4::COARSE90DEG
IKONOS3::BAND4

IKONOS2_GABOR1::FINE90DEG
IKONOS3::BAND1
IKONOS2::BAND2

IKONOS2_GABOR4::COARSE0DEG
IKONOS2_GABOR1::COARSE0DEG

IKONOS2_GABOR1::COARSE90DEG
IKONOS2_GABOR1::FINE0DEG

IKONOS2::BAND4
IKONOS2_GABOR4::FINE0DEG
AERIAL_GABOR1::FINE90DEG

AERIAL_GABOR2::COARSE90DEG
AERIAL_GABOR1::COARSE0DEG

IKONOS3::BAND2
AERIAL::BAND3
AERIAL::BAND2

AERIAL_GABOR2::FINE0DEG

Sequential backward selection

Classification accuracy

Figure 25: Results of sequential backward feature selection for classification
of a satellite image using 28 features. x-axis shows the classification
accuracy (%) and y-axis shows the features removed at each iteration (the
first iteration is at the bottom). The highest accuracy value is shown with a
star.
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Summary

� The choice between feature reduction and feature selection depends on the
application domain and the specific training data.

� Feature selection leads to savings in computational costs and the selected features
retain their original physical interpretation.

� Feature reduction with transformations may provide a better discriminative ability
but these new features may not have a clear physical meaning.
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Assignment Problem

Question:

(a) Given the following sets of feature vector belonging to two classes ω1 and ω2 which is Gaussian
distributed.

(1, 2)t, (3, 5)t, (4, 3)t, (5, 6)t, (7, 5)t ∈ ω1

(6, 2)t, (9, 4)t, (10, 1)t, (12, 3)t, (13, 6)t ∈ ω2

The vector are projected onto a line to represent the feature vectors by a single feature. Find out
the best direction of the line of projection that maintains the separability of the two classes.

(b) Assuming the mean of the projected point belonging to ω1 to be the origin of the projection line,
identify the point on the projection line that optimally separates two classes. Assume the classes to
be equally probable and the projected features also follow Gaussian distribution.
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