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Introduction

� Data availability in a Bayesian framework
� We could design an optimal classifier if we know

� P (wj) (priors)
� p(x|wj) (class-conditional densities)

Unfortunately, we rarely have this complete information.

� Design a classifier from training samples
� No problem with prior estimation
� Samples are often too small for class-conditional estimation (large dimension of feature

space)

� Some priori information about the problem should be known.
� Normality of p(x|wj)

p(x|wj) ∼ N(µj ,Σj)
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Introduction

� Parametric estimation techniques
� Maximum-Likelihood Estimation (MLE) and
� Bayesian Estimations

� Some other approaches for parameter estimation
� Histogram based technique
� Parzen-Rosenblatt window technique (Kernel/Window based technique)

� Results are nearly identical, but approaches are different

� Parameters in MLE are fixed but unknown.

� Best parameters are obtained by maximizing the probability of obtaining the
samples observed.

� Bayesian methods view the parameters as random variables having some known
distribution

� In either approach, we use P (wi|x) for our classification rule.
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Difference between ML and Bayesian estimation

� Maximum-Likelihood Estimation (MLE)
� Views the parameters as quantities whose values are fixed but unknown.
� We Estimate these values by maximizing the probability of obtaining the samples

observed.

� Bayesian Estimations
� Views the parameters as random variables having some known prior distribution.
� We observe new samples and converts the prior to a posterior density.

4/47 Kundan Kumar Pattern Classification



Parametric Estimation Non-parametric estimation Distance Functions References

Maximum Likelihood Estimation
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Maximum Likelihood Estimation

� C → no. of classes

� D1,D2,D3, . . . ,DC (set of features for different classes)

� p(x|wj)→ known parametric form

p(x|wj) ∼ N(µj ,Σj)

where µj is the mean vector, and Σj is the co-variance matrix.

� For parameter vector θj = [µj ,Σj ]
T , the parametric probability distribution function

as
p(x|wj) ≡ p(x|wj , θj) = p(x|θj)

� Here our objective is to use the information from the training samples in set Dj to
obtain good estimates for the unknown parameter vector θj .

� We can apply MLE on individual set to estimate the parameters.
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Maximum Likelihood Estimation

� Let us assume the set Dj = {x1, x2, . . . , xn} of independent and identically distributed
(i.i.d.) samples drawn from the density p(x|θj)

� That means Di does not provide any information about the parameter vector θj for i 6= j,
i.e., samples from one class do not provide any information of the parameter vector of the
probability density function of another class.

� Thus, we can work with each class separately and omit the class labels (j), so that we write
the probability density as p(x|θ).

� Thus, the probability of observing D = {x1, x2, . . . , xn} is

p(D|θ) = p(x1|θ) ∗ p(x2|θ) ∗ · · · ∗ p(xn|θ) =

n∏

k=1

p(xk|θ)

where n is the number of data samples in set D.

� p(D|θ) is also called the likelihood of θ with respect to the set of samples D.
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Maximum Likelihood Estimation

� The maximum-likelihood estimation of θ is, by definition, the value θ̂ that
maximizes p(D|θ).

3.2. MAXIMUM LIKELIHOOD ESTIMATION 5

p(D|θ) =
n∏

k=1

p(xk|θ). (1)

Recall from Chap. ?? that, viewed as a function of θ, p(D|θ) is called the likelihood
of θ with respect to the set of samples. The maximum likelihood estimate of θ is, by
definition, the value θ̂ that maximizes p(D|θ). Intuitively, this estimate corresponds
to the value of θ that in some sense best agrees with or supports the actually observed
training samples (Fig. 3.1).
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Figure 3.1: The top graph shows several training points in one dimension, known or
assumed to be drawn from a Gaussian of a particular variance, but unknown mean.
Four of the infinite number of candidate source distributions are shown in dashed
lines. The middle figures shows the likelihood p(D|θ) as a function of the mean. If
we had a very large number of training points, this likelihood would be very narrow.
The value that maximizes the likelihood is marked θ̂; it also maximizes the logarithm
of the likelihood — i.e., the log-likelihood l(θ), shown at the bottom. Note especially

that the likelihood lies in a different space from p(x|θ̂), and the two can have different
functional forms.

For analytical purposes, it is usually easier to work with the logarithm of the like-
lihood than with the likelihood itself. Since the logarithm is monotonically increasing,
the θ̂ that maximizes the log-likelihood also maximizes the likelihood. If p(D|θ) is a

well behaved, differentiable function of θ, θ̂ can be found by the standard methods of
differential calculus. If the number of parameters to be set is p, then we let θ denote

p(D|θ) =

n∏

k=1

p(xk|θ)

l(θ) = ln p(D|θ)

=
n∑

k=1

ln p(xk|θ)

Solution

θ̂ = arg max
θ
l(θ)
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Maximum Likelihood Estimation: Optimal estimation

� Let θ = (θ1, θ2, . . . , θp)
T , and ∇θ be the gradient operator

∇θ =




∂
∂θ1
...
∂
∂θp




� ∇θl(θ) = 0

� Example of a specific case: Gaussian distribution

� Multivariate normal population with (µ,Σ)
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Gaussian case: Unknown µ

� σ2 is known, only µ is unknown.

3.2. MAXIMUM LIKELIHOOD ESTIMATION 7

3.2.2 The Gaussian Case: Unknown µ

To see how maximum likelihood methods results apply to a specific case, suppose
that the samples are drawn from a multivariate normal population with mean µ and
covariance matrix Σ. For simplicity, consider first the case where only the mean is
unknown. Under this condition, we consider a sample point xk and find

ln p(xk|µ) = −1

2
ln

[
(2π)d|Σ|

]
− 1

2
(xk − µ)tΣ−1(xk − µ) (8)

and

∇θ ln p(xk|µ) = Σ−1(xk − µ). (9)

Identifying θ with µ, we see from Eq. 9 that the maximum likelihood estimate for µ
must satisfy

n∑

k=1

Σ−1(xk − µ̂) = 0, (10)

that is, each of the d components of µ̂ must vanish. Multiplying by Σ and rearranging,
we obtain

µ̂ =
1

n

n∑

k=1

xk. (11)

This is a very satisfying result. It says that the maximum likelihood estimate for
the unknown population mean is just the arithmetic average of the training samples
— the sample mean, sometimes written µ̂n to clarify its dependence on the number sample

meanof samples. Geometrically, if we think of the n samples as a cloud of points, the
sample mean is the centroid of the cloud. The sample mean has a number of desirable
statistical properties as well, and one would be inclined to use this rather obvious
estimate even without knowing that it is the maximum likelihood solution.

3.2.3 The Gaussian Case: Unknown µ and Σ

In the more general (and more typical) multivariate normal case, neither the mean µ
nor the covariance matrix Σ is known. Thus, these unknown parameters constitute
the components of the parameter vector θ. Consider first the univariate case with
θ1 = µ and θ2 = σ2. Here the log-likelihood of a single point is

ln p(xk|θ) = −1

2
ln 2πθ2 −

1

2θ2
(xk − θ1)

2 (12)

and its derivative is

∇θl = ∇θ ln p(xk|θ) =

[
1
θ2

(xk − θ1)

− 1
2θ2

+ (xk−θ1)
2

2θ2
2

]
. (13)

Applying Eq. 7 to the full log-likelihood leads to the conditions

n∑

k=1

1

θ̂2

(xk − θ̂1) = 0 (14)
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Gaussian case: Unknown µ and Σ

� θ1 = µ and θ2 = σ2 are unknown.

� The log-likelihood of a single point is
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� Derivative is
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� After simplification

8 CHAPTER 3. MAXIMUM LIKELIHOOD AND BAYESIAN ESTIMATION

and

−
n∑

k=1

1

θ̂2

+

n∑

k=1

(xk − θ̂1)
2

θ̂2
2

= 0, (15)

where θ̂1 and θ̂2 are the maximum likelihood estimates for θ1 and θ2, respectively. By
substituting µ̂ = θ̂1, σ̂2 = θ̂2 and doing a little rearranging, we obtain the following
maximum likelihood estimates for µ and σ2:

µ̂ =
1

n

n∑

k=1

xk (16)

and

σ̂2 =
1

n

n∑

k=1

(xk − µ̂)2. (17)

While the analysis of the multivariate case is basically very similar, considerably
more manipulations are involved (Problem 6). Just as we would predict, though, the
result is that the maximum likelihood estimates for µ and Σ are given by

µ̂ =
1

n

n∑

k=1

xk (18)

and

Σ̂ =
1

n

n∑

k=1

(xk − µ̂)(xk − µ̂)t. (19)

Thus, once again we find that the maximum likelihood estimate for the mean
vector is the sample mean. The maximum likelihood estimate for the covariance
matrix is the arithmetic average of the n matrices (xk − µ̂)(xk − µ̂)t. Since the true
covariance matrix is the expected value of the matrix (x− µ̂) (x− µ̂)t, this is also a
very satisfying result.

3.2.4 Bias

The maximum likelihood estimate for the variance σ2 is biased; that is, the expectedbias
value over all data sets of size n of the sample variance is not equal to the true
variance:∗

E
[

1

n

n∑

i=1

(xi − x̄)2

]
=

n− 1

n
σ2 �= σ2. (20)

We shall return to a more general consideration of bias in Chap. ??, but for the
moment we can verify Eq. 20 for an underlying distribution with non-zero variance,
σ2, in the extreme case of n = 1, in which the expectation value E [·] = 0 �= σ2. The
maximum likelihood estimate of the covariance matrix is similarly biased.

Elementary unbiased estimators for σ2 and Σ are given by

∗ There should be no confusion over this use of the statistical term bias, and that for an offset in
neural networks and many other places.
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Example to be solved

� Estimate optimal parameter θ̂

p(x|θ) =

{
θe−θx x ≥ 0

0 otherwise

using log-maximum likelihood estimation approach.

Solution: θ̂ = 1
1
n

∑n
k=1 xk

= 1
µ
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Example to be solved

The random variable x follows the following pdf

p(x|θ) =

{
θ2xe−θx x > 0

0 otherwise

Derive the maximum likelihood estimate of θ̂ given N measurements x1, x2, . . . , xN .
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Example to be solved

Lex x be a d-dimensional binary (0 or 1) vector with a multivariate Bernoulli distribution

P (x/θ) =

d∏

i=1

θxii (1− θi)1−xi

where θ = (θ1, . . . , θd)
t is an unknown parameter vector, θi being the probability that

xi = 1. Show that the maximum-likelihood estimate for θ is

θ̂ =
1

n

n∑

k=1

xk
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Non-parametric parameter estimation
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Introduction

� We have already seen that for statistical pattern classification, density function are
to be known for each class.

� The type of density function, such as the Normal or Poisson, are to be known to
estimate the parameters of the densities called parametric estimation.

� In most real problems, even the types of the density functions of interest are
unknown.
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Introduction

� Looking at histograms, scatter plots or tables of the data may suggest that a
particular type of class density may be used or some arbitrary density can be used.

� Arbitrary density function can be estimated from the data samples using
nonparametric methods.

� In addition, most of the classical parametric densities are unimodal, whereas many
practical problems involve multimodal densities.

� Non-parametric methods can be used with arbitrary distributions and without the
assumption that the forms of the underlying densities are known.
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Non-parametric Methods
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Histogram Method
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Histogram Method

� A very simple method is to
partition the space into a
number of equally-sized cells
(bins) and compute a histogram.

Histogram Method

I A very simple method is to
partition the space into a
number of equally-sized
cells (bins) and compute a
histogram. Figure 1: Histogram in one

dimension.

I The estimate of the density at a point x becomes

p(x) =
k

nV
where n is the total number of samples, k is the number of
samples in the cell that includes x, and V is the volume of
that cell.
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Figure: Histogram in one dimension

� The estimate of the density at a point x becomes

p(x) =
k

nV

where n is the total number of samples, k is the number of samples in the bin that includes x, and
V is the volume of that cell.

� For 1-D feature, V is width of bin. Similarly for 2-D feature, V is the area of the bin.

� Thumb rule to choose the number of intervals (bins) to be equal to the square root of the number
of samples.
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Histogram Method
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Figure: (a) The true normal density from which 50 random numbers were chosen. (b) A histogram of 50
normally distributed random numbers with three intervals. (c) A histogram of 50 normally distributed random
numbers with six intervals. (d) A histogram of 50 normally distributed random numbers with 24 intervals.
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Example to be solved
Question: Classification of samples using histograms and Bayesian decision rule
Use the following data to classify a sample with x = 7.5, given that P (A) = P (B) = 0.5. The
following data are the values of feature x for 60 randomly chosen samples from
Class A:

0.80 0.91 0.93 0.95 1.32 1.53 1.57 1.63 1.67 1.74
2.01 2.18 2.27 2.31 2.40 2.61 2.64 2.64 2.67 2.85
2.96 2.97 3.17 3.17 3.38 3.67 3.73 3.83 3.99 4.06
4.10 4.12 4.18 4.20 4.23 4.27 4.27 4.39 4.40 4.46
4.47 4.61 4.64 4.89 4.96 5.12 5.15 5.33 5.33 5.47
5.64 5.85 5.99 6.29 6.42 6.53 6.70 6.78 7.18 7.22

Class B:

3.54 3.88 4.24 4.30 4.30 4.70 4.75 4.97 5.21 5.42
5.60 5.77 5.87 5.94 5.95 6.04 6.05 6.15 6.19 6.21
6.33 6.41 6.43 6.49 6.52 6.58 6.60 6.63 6.65 6.75
6.90 6.92 7.03 7.08 7.18 7.29 7.33 7.41 7.41 7.46
7.61 7.67 7.68 7.68 7.78 7.96 8.03 8.12 8.20 8.22
8.33 8.36 8.44 8.45 8.49 8.75 8.76 9.14 9.20 9.86
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Example to be solved
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P (A|7.5) = 0.033 and P (B|7.5) = 0.233, so the sample should be classified into class
B.
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2-D Histogram Method

� Histograms are not restricted to one-dimensional densities, but can be used in any
number of dimensions.

� p(x, y) can be approximated by dividing both x and y into intervals, and
determining the number of samples that fall within each rectangular histogram bin
with dimensions ∆x and ∆y.

� The volume under the surface of this two-dimensional histogram is to be normalized
to equal one, to yield an estimate of the density function p(x, y).

� The histogram technique becomes impractical for spaces of high dimension.

24/47 Kundan Kumar Pattern Classification



Parametric Estimation Non-parametric estimation Distance Functions References

Kernel and Window Methods
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Kernel and Window Estimators

� The samples gives a very rough approximation to the true density function, namely
a set of spikes or delta functions, one at each sample value, each with a very small
width and a very large height.

� The combined area of all the spikes is one.

� Histogram based density approximation to a continuous density function is not
useful in decision making.

� If the delta functions at each sample point are replaced by other function called
Kernels – such as rectangles, triangles, or normal density functions, which have
been scaled so that their combined area equals one-their sum produces a smoother,
more satisfactory estimate.
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Example to be solved

Question: Using a triangle kernel.
Consider the data set with one feature x and three samples at x = 1, 2, and 4. We
have decided to use a triangular kernel with a base of three units. Plot the estimated
density function p(x).

27/47 Kundan Kumar Pattern Classification



Parametric Estimation Non-parametric estimation Distance Functions References

Example to be solved

Question: Following sets of 2-D feature vectors from classes A and B are given{(
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Using rectangular window of size 3× 3, compute p((3.5, 3)t|A) and p((3.5, 3)t|B).
Classify (3.5, 3)t if P (A) = 1/3 and P (B) = 2/3.
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Non-parametric Density Estimation

� Suppose that n samples x1, x2, . . . , xn are drawn i.i.d. according to the distribution
p(x).

� The probability P that a vector x will fall in a region R is given by

P =

∫

R

p(x′)dx′

� The probability that k of the n will fall in R is given by the binomial law

Pk =

(
n
k

)
P k(1− P )n−k.

� The expected value of k is E[k] = nP and the MLE for P is P̂ = k
n .
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Non-parametric Density Estimation

� If we assume that p(x) is continuous and R is small enough so that p(x) does not
vary significantly in it, we can get the approximation

∫

R

p(x′)dx′ ' p(x)V

where x is a point in R and V is the volume of R.

� Then, the density estimate becomes

p(x) ' k/n

V
.
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Non-parametric Density Estimation

� Let n be the number of samples used, Rn be the region with n samples, Vn be the
volume of Rn, kn be the number of samples falling in Rn, and pn(x) = kn/n

Vn
be the

estimate for p(x).

� If pn(x) is to converge to p(x), three conditions are required:

lim
n→∞

Vn = 0

lim
n→∞

kn =∞

lim
n→∞

kn
n

= 0
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Nearest Neighbor Classification
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The Nearest Neighbor Classifier

� We have been using Bayesian classifiers that make decisions according to the
posterior probabilities.

� We have discussed parametric and non-parametric methods for learning classifiers
by estimating the probabilities using training data.

� We will study new techniques that use training data to learn the classifiers directly
without estimating any probabilistic structure.

� In particular, we will study the k-nearest neighbour classifier, linear discriminant
functions, and support vector machines.
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The Nearest Neighbor Classifier

� Given the training data D = {x1, · · · , xn} as a set of n labeled examples, the
nearest neighbor classifier assigns a test point x the label associated with its closest
neighbor in D.

� Closeness is defined using a distance function.

� Given the distance function, the nearest neighbor classifier partitions the feature
space into cells consisting of all points closer to a given training point than to any
other training points.

34/47 Kundan Kumar Pattern Classification



Parametric Estimation Non-parametric estimation Distance Functions References

The Nearest Neighbor Classifier

� All points in such a cell are labeled by the class of the training point, forming a
Voronoi tesselation of the feature space.

The Nearest Neighbor Classifier

I All points in such a cell are labeled by the class of the
training point, forming a Voronoi tesselation of the feature
space.

Figure 1: In two dimensions, the nearest neighbor algorithm leads to a
partitioning of the input space into Voronoi cells, each labeled by the class of
the training point it contains. In three dimensions, the cells are
three-dimensional, and the decision boundary resembles the surface of a
crystal.
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Figure: In two dimensions, the nearest neighbor algorithm leads to a partitioning of the input space into Voronoi
cells, each labeled by the class of the training point it contains. In three dimensions, the cells are
three-dimensional, and the decision boundary resembles the surface of a crystal.
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Example to be solved

Question: Consider the following set of seven 2-dimensional feature vectors:

X1 = (1, 0)t, X2 = (0, 1)t, X3 = (0,−1)t,

X4 = (0, 0)t, X5 = (0, 2)t, X6 = (0,−2)t, X7 = (−2, 0)t

If X1, X2, X3 ∈ ω1 and X4, X5, X6, X7 ∈ ω2, sketch the decision boundary resulting
from the nearest neighbor rule.
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Nearest Neighbor Algorithm

Learning Algorithm:

� Store training examples

Prediction Algorithm:

� To classify a new example x by finding the training example (xi, yi) that is nearest
to x

� Guess the class y = yi
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k-Nearest Neighbor Classifier

� To classify a new input vector x, examine the k-closest training data points to x
and assign the object to the most frequently occurring class.

� In other words, a decision is made by examining the labels on the k-nearest
neighbors and taking a vote.
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common values for k: 3, 5 
� common values for k: 3, 5
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k-Nearest Neighbor Classifier

� The computational complexity of the nearest neighbor algorithm – both in space
(storage) and time (search) – has received a great deal of analysis.

� In the most straightforward approach, we inspect each stored training point one by
one, calculate its distance to x, and keep a list of the k closest ones.

� There are some parallel implementations and algorithmic techniques for reducing
the computational load in nearest neighbor searches.
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Distance Functions
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Distance Functions

� The nearest neighbor classifier relies on a metric or a distance function between
points.

� For all points x, y, and z, a metric D(·, ·) must satisfy the following properties:
� Non-negativity: D(x, y) ≥ 0.
� Reflexivity: D(x, y) = 0 if and only if x = y.
� Symmetry: D(x, y) = D(y, x).
� Triangle inequality: D(x, y) +D(y, z) ≥ D(x, z).

� If the second property is not satisfied, D(·, ·) is called a pseudometric.
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Distance Functions

� A general class of metrics for d-dimensional patterns is the Minkowski metric

Distance Functions

I A general class of metrics for d-dimensional patterns is the
Minkowski metric

Lp(x,y) =

(
d∑

i=1

|xi − yi|p
)1/p

also referred to as the Lp norm.

I The Euclidean distance is the L2 norm

L2(x,y) =

(
d∑

i=1

|xi − yi|2
)1/2

.

I The Manhattan or city block distance is the L1 norm

L1(x,y) =

d∑

i=1

|xi − yi|.
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Distance Functions

� The L∞ norm is the maximum of the distances along individual coordinate axes

Distance Functions

I The L∞ norm is the maximum of the distances along
individual coordinate axes

L∞(x,y) =
d

max
i=1
|xi − yi|.

Figure 3: Each colored shape consists of points at a distance 1.0 from the
origin, measured using different values of p in the Minkowski Lp metric.
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Figure: Each colored shape consists of points at a distance 1.0 from the origin, measured using different values
of p in the Minkowski Lp metric.
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Feature Normalization

� We should be careful about scaling of the coordinate axes when we compute these
metrics.

� When there is great difference in the range of the data along different axes in a
multidimensional space, these metrics implicitly assign more weighting to features
with large ranges than those with small ranges.

� Feature normalization can be used to approximately equalize ranges of the features
and make them have approximately the same effect in the distance computation.

� The following methods can be used to independently normalize each feature.
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Feature Normalization

� Min-max normalization or Linear scaling to unit range:

x̃ =
x−min

max−min

results inx̃ being in the [0, 1] range, where x ∈ R
� Standardization or Linear scaling to unit variance:

A feature x ∈ R can be transformed to a random variable with zero mean and unit
variance as

x̃ =
x− µ
σ

where µ and σ are the sample mean and the sample standard deviation of that
feature, respectively.
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