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Introduction

m Data availability in a Bayesian framework
0 We could design an optimal classifier if we know
B P(wj;) (priors)
B p(x|w;) (class-conditional densities)
Unfortunately, we rarely have this complete information.
® Design a classifier from training samples
0 No problem with prior estimation
O Samples are often too small for class-conditional estimation (large dimension of feature
space)
® Some priori information about the problem should be known.
0 Normality of p(x|w;)
p(xfw;) ~ N(pj, ;)
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Introduction

® Parametric estimation techniques
O Maximum-Likelihood Estimation (MLE) and
0 Bayesian Estimations

® Some other approaches for parameter estimation

0 Histogram based technique
O Parzen-Rosenblatt window technique (Kernel /Window based technique)

® Results are nearly identical, but approaches are different
® Parameters in MLE are fixed but unknown.

m Best parameters are obtained by maximizing the probability of obtaining the
samples observed.

® Bayesian methods view the parameters as random variables having some known
distribution

® |n either approach, we use P(w;|x) for our classification rule.

3/47 Kundan Kumar Pattern Classification




Parametric Estimation
000e0000000000

Difference between ML and Bayesian estimation

® Maximum-Likelihood Estimation (MLE)
O Views the parameters as quantities whose values are fixed but unknown.
0 We Estimate these values by maximizing the probability of obtaining the samples
observed.
® Bayesian Estimations

O Views the parameters as random variables having some known prior distribution.
0 We observe new samples and converts the prior to a posterior density.
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation

® (' — no. of classes
8 Dy,Dy,Ds,...,Dc (set of features for different classes)

® p(x|w;j) — known parametric form

p(x|wy) ~ N(pj, %))

where 1 is the mean vector, and YJ; is the co-variance matrix.

® For parameter vector ¢; = [,uj,Zj]T, the parametric probability distribution function
as

p(x|wy) = p(x|wy, 0;) = p(x[6;)
® Here our objective is to use the information from the training samples in set D; to
obtain good estimates for the unknown parameter vector 6;.
® We can apply MLE on individual set to estimate the parameters.
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Maximum Likelihood Estimation

B |et us assume the set D; = {x1,X2,...,x,} of independent and identically distributed
(i.i.d.) samples drawn from the density p(x|6,)

® That means D; does not provide any information about the parameter vector 6; for i # j,
i.e., samples from one class do not provide any information of the parameter vector of the
probability density function of another class.

® Thus, we can work with each class separately and omit the class labels (j), so that we write
the probability density as p(x|6).
B Thus, the probability of observing D = {x1,x2,...,%,} is

n

p(D|0) = p(x1160) * p(x2|0) * - - # p(x]8) = [ p(xi[0)
k=1

where n is the number of data samples in set D.

® p(D|0) is also called the likelihood of @ with respect to the set of samples D.
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Maximum Likelihood Estimation

8 The maximum-likelihood estimation of € is, by definition, the value 0 that
maximizes p(D|0).

n
Dio) = [T pelo
RSN, (1) = I psut)
7, y\\\ . N =
////// // SN \\ \\
_Z =z o S>> "
o) 12 3 4 5 6 7 1(6) = In p(D|0)
12x107 n
8x107 3 = Zln p(xx|0)
.4><10'7‘ y o k=1
o 1 2 3 4 5 6 7 .
o Solution
20 5 .
0 , . 0 = arg meaxl(Q)

Kundan Kumar Pattern Classification




Parametric Estimation
000000008000 00

Maximum Likelihood Estimation: Optimal estimation

® let 0 = (01,02,...,0,)T, and Vy be the gradient operator
r
001
Vo = :
_0_
20,
L VQZ(H) =0
®m Example of a specific case: Gaussian distribution
® Multivariate normal population with (u, ¥)
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Gaussian case: Unknown

® o2 is known, only p is unknown.

® The maximum likelihood estimate for y must satisfy
Z S xp —f1) =0

® Fach of the d component of ji must vanish.
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Gaussian case: Unknown y and X

2

® ¢, =y and O3 = o~ are unknown.

® The log-likelihood of a single point is

1 1
In p(z|0) = ~3 In 2760y — %(xk —6,)?
m Derivative is
1
7 (xx — 01)
Vgl =Vg In p(zk|0) = [ _i 1 (@=0) ]
204 202

m After simplification

> &22%2(%—/1)2
k=1

=
Il
S|
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Example to be solved

® Estimate optimal parameter 0

fe—0 x>0
p(z|0) = { 0 otherwise

using log-maximum likelihood estimation approach.

Solution: § = ——2+— =
%22:1 Tk

==
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Example to be solved

The random variable x follows the following pdf

02 g0 x>0
p(z|0) = { 0 otherwise

Derive the maximum likelihood estimate of 6 given N measurements x1,x2,...,TN.
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Example to be solved

Lex x be a d-dimensional binary (0 or 1) vector with a multivariate Bernoulli distribution

P(x/0) = Hemz — ;)

where 8 = (01,...,04)" is an unknown parameter vector, ; being the probability that
x; = 1. Show that the maximum-likelihood estimate for 0 is

U
B—nkglxk
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Non-parametric parameter estimation
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Introduction

® We have already seen that for statistical pattern classification, density function are
to be known for each class.

® The type of density function, such as the Normal or Poisson, are to be known to
estimate the parameters of the densities called parametric estimation.

® |n most real problems, even the types of the density functions of interest are
unknown.
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Introduction

® | ooking at histograms, scatter plots or tables of the data may suggest that a
particular type of class density may be used or some arbitrary density can be used.

® Arbitrary density function can be estimated from the data samples using
nonparametric methods.

® |n addition, most of the classical parametric densities are unimodal, whereas many
practical problems involve multimodal densities.

® Non-parametric methods can be used with arbitrary distributions and without the
assumption that the forms of the underlying densities are known.
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Non-parametric Methods

Continuous X

use as is quantize
5x) = kin p(x) = pmf using
P = 14 relative frequencies

/\ (histogram method)

fixed window variable window
variable k fixed k
(Parzen windows)  (k-nearest neighbors)
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Histogram Method
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Histogram Method

B A very simple method is to
partition the space into a
number of equally-sized cells
(bins) and compute a histogram. v

Figure: Histogram in one dimension

B The estimate of the density at a point x becomes
k
p(x) = nv

where n is the total number of samples, k is the number of samples in the bin that includes x, and
V' is the volume of that cell.

B For 1-D feature, V' is width of bin. Similarly for 2-D feature, V' is the area of the bin.

B Thumb rule to choose the number of intervals (bins) to be equal to the square root of the number
of samples.
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Histogram Method
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Figure: (a) The true normal density from which 50 random numbers were chosen. (b) A histogram of 50

normally distributed random numbers with three intervals. (c) A histogram of 50 normally distributed random

numbers with six intervals. (d) A histogram of 50 normally distributed random numbers with 24 intervals.
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Example to be solved

Question: Classification of samples using histograms and Bayesian decision rule
Use the following data to classify a sample with z = 7.5, given that P(A) = P(B) = 0.5. The
following data are the values of feature x for 60 randomly chosen samples from

Class A:
0.80 091 093 095 132 153 157 163 167 174
201 218 227 231 240 261 264 264 267 285
296 297 3.17 317 338 367 373 383 399 4.006
410 412 4.18 420 423 427 427 439 440 446
4.47 4.61 464 489 496 5.12 5.15 5.33 5.33 5.47
564 585 599 6.29 642 653 670 6.78 7.18 7.22

Class B:

354 388 424 430 430 470 475 497 521 542
560 5.77 587 594 595 6.04 6.05 6.15 6.19 6.21
6.33 6.41 643 649 652 658 660 663 6.65 6.75
690 692 703 708 7.18 729 733 7.41 741 7.46
761 767 768 768 778 796 803 812 820 8.22
833 836 844 845 849 875 876 9.14 920 9.86
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Example to be solved
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x T

P(A|7.5) = 0.033 and P(B]7.5) = 0.233, so the sample should be classified into class
B.
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2-D Histogram Method

® Histograms are not restricted to one-dimensional densities, but can be used in any
number of dimensions.

® p(x,y) can be approximated by dividing both = and y into intervals, and
determining the number of samples that fall within each rectangular histogram bin
with dimensions Az and Ay.

® The volume under the surface of this two-dimensional histogram is to be normalized
to equal one, to yield an estimate of the density function p(x,y).

® The histogram technique becomes impractical for spaces of high dimension.
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Kernel and Window Methods
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Kernel and Window Estimators

® The samples gives a very rough approximation to the true density function, namely
a set of spikes or delta functions, one at each sample value, each with a very small
width and a very large height.

® The combined area of all the spikes is one.

® Histogram based density approximation to a continuous density function is not
useful in decision making.

m If the delta functions at each sample point are replaced by other function called
Kernels — such as rectangles, triangles, or normal density functions, which have
been scaled so that their combined area equals one-their sum produces a smoother,
more satisfactory estimate.
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Example to be solved

Question: Using a triangle kernel.

Consider the data set with one feature x and three samples at z = 1,2, and 4. We
have decided to use a triangular kernel with a base of three units. Plot the estimated
density function p(x).
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6/274 . 627
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Example to be solved

Question: Following sets of 2-D feature vectors from classes A and B are given

) GG ) 06) () (5 ) e
1G) GG )()(5)(e) () e

Using rectangular window of size 3 x 3, compute p((3.5,3)!|A) and p((3.5,3)| B).
Classify (3.5,3)" if P(A) =1/3 and P(B) = 2/3.

Kundan Kumar Pattern Classification




Non-parametric estimation
0000000000000 0e0000000000

Non-parametric Density Estimation

® Suppose that n samples x1,xs,...,X, are drawn i.i.d. according to the distribution
p(x).
® The probability P that a vector x will fall in a region R is given by

pP= / p(x')dx’

R

® The probability that k of the n will fall in R is given by the binomial law
P, = < Z ) Pk(1 — p)n*,

= The expected value of k is E[k] = nP and the MLE for P is P = %
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Non-parametric Density Estimation

® |f we assume that p(x) is continuous and R is small enough so that p(x) does not
vary significantly in it, we can get the approximation

/ p(x')dx = p(x)V
R

where x is a point in R and V is the volume of R.

B Then, the density estimate becomes
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Non-parametric Density Estimation

® |et n be the number of samples used, R,, be the region with n samples, V,, be the
volume of R,,, k,, be the number of samples falling in R,,, and p,,(x) = {}—nn be the
estimate for p(x).

m If p,(x) is to converge to p(x), three conditions are required:

lim V,, =0

n—0o0

lim k, = co
n—oo

kn
lim — =0
n—oo n
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Nearest Neighbor Classification
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The Nearest Neighbor Classifier

® We have been using Bayesian classifiers that make decisions according to the
posterior probabilities.

® We have discussed parametric and non-parametric methods for learning classifiers
by estimating the probabilities using training data.

= We will study new techniques that use training data to learn the classifiers directly
without estimating any probabilistic structure.

® |n particular, we will study the k-nearest neighbour classifier, linear discriminant
functions, and support vector machines.
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The Nearest Neighbor Classifier

® Given the training data D = {x;,--- ,x,} as a set of n labeled examples, the
nearest neighbor classifier assigns a test point x the label associated with its closest
neighbor in D.

® Closeness is defined using a distance function.

® Given the distance function, the nearest neighbor classifier partitions the feature
space into cells consisting of all points closer to a given training point than to any
other training points.
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The Nearest Neighbor Classifier

m All points in such a cell are labeled by the class of the training point, forming a
Voronoi tesselation of the feature space.

Figure: In two dimensions, the nearest neighbor algorithm leads to a partitioning of the input space into Voronoi
cells, each labeled by the class of the training point it contains. In three dimensions, the cells are
three-dimensional, and the decision boundary resembles the surface of a crystal.
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Example to be solved

Question: Consider the following set of seven 2-dimensional feature vectors:
X; = (1,0)", X5 =(0,1)", X3=(0,-1)",
X4 =(0,0)", X5=(0,2)", Xp=(0,-2)", X7=(-2,0)

If X1, X9, X3 € wp and Xy, X5, X¢, X7 € wa, sketch the decision boundary resulting
from the nearest neighbor rule.
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Nearest Neighbor Algorithm

Learning Algorithm:
® Store training examples
Prediction Algorithm:

® To classify a new example x by finding the training example (x;,y;) that is nearest
to x

® Guess the class y = y;
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k-Nearest Neighbor Classifier

® To classify a new input vector x, examine the k-closest training data points to x
and assign the object to the most frequently occurring class.

B |n other words, a decision is made by examining the labels on the k-nearest
neighbors and taking a vote.

. . k=1
e %o ® ° k=5
: -.‘./
° ° '.o ®
o ®o ° )

® common values for k: 3, 5
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k-Nearest Neighbor Classifier

® The computational complexity of the nearest neighbor algorithm — both in space
(storage) and time (search) — has received a great deal of analysis.

® |n the most straightforward approach, we inspect each stored training point one by
one, calculate its distance to x, and keep a list of the k closest ones.

® There are some parallel implementations and algorithmic techniques for reducing
the computational load in nearest neighbor searches.
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Distance Functions

® The nearest neighbor classifier relies on a metric or a distance function between
points.
m For all points x, y, and z, a metric D(-, ) must satisfy the following properties:
o Non-negativity: D(x,y) > 0.
O Reflexivity: D(x,y) =0 if and only if x = y.
O Symmetry: D(x,y) = D(y,x).
O Triangle inequality: D(x,y) + D(y,z) > D(x,z).
m |f the second property is not satisfied, D(-,) is called a pseudometric.
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Distance Functions

® A general class of metrics for d-dimensional patterns is the Minkowski metric

d 1/p
Ly(x,y) = (Z |xi — y#’)
=1

also referred to as the L, norm.
® The Euclidean distance is the Ly norm

p 1/2
Ly(x,y) = (Z |xi — yi|2> :
i=1

® The Manhattan or city block distance is the L1 norm
d

Li(x,y) = Z x; — il

i=1
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Distance Functions

® The L, norm is the maximum of the distances along individual coordinate axes

Luo(x,y) = miax x; — |
1=

Figure: Each colored shape consists of points at a distance 1.0 from the origin, measured using different values
of p in the Minkowski L, metric.
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Feature Normalization

® We should be careful about scaling of the coordinate axes when we compute these
metrics.

® When there is great difference in the range of the data along different axes in a
multidimensional space, these metrics implicitly assign more weighting to features
with large ranges than those with small ranges.

m Feature normalization can be used to approximately equalize ranges of the features
and make them have approximately the same effect in the distance computation.

® The following methods can be used to independently normalize each feature.
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Feature Normalization

® Min-max normalization or Linear scaling to unit range:

5 X — min
= max — min

results inX being in the [0, 1] range, where x € R
® Standardization or Linear scaling to unit variance:

A feature x € R can be transformed to a random variable with zero mean and unit

variance as
X— U

ag
where 1 and o are the sample mean and the sample standard deviation of that
feature, respectively.

X =
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