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Bayesian Decision Theory

® Bayesian Decision Theory is a fundamental statistical approach that quantifies the
trade-offs between various decisions using probabilities and costs that accompany
such decisions.

® First, we will assume that all probabilities are known.

® Then, we will study the cases where the probabilistic structure is not completely
known.
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Fish Sorting Example Revisited

m State of nature (class) is a random variable.

m Define w as the type of fish we observe (state of nature, class) where
0 w = w; for sea bass,
0 w = wy for salmon.
O P(wn) is the a priori probability that the next fish is a sea bass.
O P(wa) is the a priori probability that the next fish is a salman.
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Prior Probabilities

® Prior probabilities reflect our knowledge of how likely each type of fish will appear
before we actually see it.

® How can we choose P(w) and P(w2)?

O Set P(w1) = P(wy) if they are equiprobable (uniform priors).
O May use different values depending on the fishing area, time of the year, etc.

® Assume there are no other types of fish

[P(wl) = P(LUQ) = 1}

(exclusivity and exhaustivity)
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Making a Decision

® How can we make a decision with only the prior information? (Decision rule)

wy if P(wl) > P(wg)
wy  otherwise

Decide {

® What is the probability of error for this decision?

[P(error) = min{P(w), P(wg)}}

® Don't you feel that there is some problem in making a decision?
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Class-Conditional Probabilities

Let's try to improve the decision using the lightness measurement .

Let z be a continuous random variable.

Probability density function p(z) (evidence)

O how frequently we will measure a pattern with feature value x (e.g., x corresponds to
lightness)

Define p(x|w;) as the class-conditional probability density

O how frequently we will measure a pattern with feature value x given that pattern
belongs to class w;

p(x|wi) and p(x|ws) describe the difference in lightness between populations of sea
bass and salmon.
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Class-Conditional Probabilities
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Figure: Hypothetical class-conditional probability density functions (lightness) for salmon/sea-bass
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Posterior Probabilities

® Suppose we know P(w;) and p(z|w;) for j = 1,2 and measure the lightness of a
fish as the value .

® Define P(wj|z) as the a posterior probability (probability of the state of nature
being w; given the measurement of feature value z)

® We can use the Bayes formula to convert the prior probability to the posterior
probability

Plw;|z) = p(z|w;)P(w;)  likelihood x prior
I p(z) - evidence

where p(x) = ilp(ij)P(Wj)
J=
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Posterior Probabilities
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Figure: Posterior probabilities for the particular priors P(wi) = 2/3 and P(w2) = 1/3 for the class-conditional

probability densities. Thus in this case, given that a pattern is measured to have feature value z = 14, the
probability it is in category wa is roughly 0.08, and that it is in wy is 0.92. At every x, the posteriors sum to 1.0.
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Making a Decision

p(x|w;) is called the /ikelihood and p(z) is called the evidence.

® How can we make a decision after observing the value of z7?

{Deci N {wl if P(wi]z) > P(ws|z) J

w9 otherwise

® Rewriting the rule gives
{Deeide { wi if p(alw) P(wr) > plalwn) P(w)
w9 otherwise
m Note that, at every x, P(w1|z) + P(ws|z) =1
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Probability of Error

® What is the probability of error for this decision?

P{(erar|2) — P(wi|x) if we decide wy
| P(wsalz) if we decide wy

® What is the average probability of error?
P(error) :/ P(error,z)dx :/ P(error|z)p(z)dx

® Bayes decision rule minimizes this error because

P(error|z) = min{ P(w;|x), P(w2|x)}
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Generalization of the preceding ideas

Generalization of Bayes decision rule

m Use of more than one feature, e.g., {z1, x2,...,24}
m Use more than two states of nature, e.g., {w1, wa,...,w}

® Allowing actions and not only decide on the state of nature
O take an action from the set of predefined actions {ay, as, ..., a.}.

® Introduce a loss of function which is more general than the probability of error
O Loss incurred A(a;lw;) for taking action c; while the true state of nature is w;.
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Generalization of the preceding ideas

® Allowing the use of more than one feature merely requires replacing the scalar = by
the feature vector x, where x is in a d-dimensional Euclidean space, R?, called the
feature space.

m Allowing actions other than classification primarily allows the possibility of rejection
— that is, of refusing to make a decision in close cases.

® The loss function states exactly how costly each action is, and is used to convert a
probability determination into a decision.
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Bayesian Decision Theory — Continuous Features

m Let {wy,ws,...,w.} be the finite set of ¢ states of nature (or “classes”,
“categories”)

m Let {aq,q9,...,a,} be the finite set of ‘a’ possible actions.
® Let A(aj|w;) be the Joss incurred for taking action c; when the state of nature is w;.

® |et x be the d-component vector-valued random variable called the feature vector.
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Bayesian Decision Theory — Continuous Features

® p(x|w;) is the class-conditional probability density function.

® P(wj) is the prior probability that nature is in state w;.

B The posterior probability can be computed as

Py = 2P

where p(x) = > % p(x|w;) P(w;).
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Conditional Risk

® Suppose we observe x and take action «.
® |f the true state of nature is wj, we incur the loss A(oy|w;).

B The expected loss with taking action «; is

R(a|x) = Z A(og|w;) P(w;|x)

which is also called the conditional risk.
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Minimum-Risk Classification

The general decision rule a(x) tells us which action to take for observation x.

We want to find the decision rule that minimizes the overall risk

R= /R(a(x)]x)p(x)dx.

Bayes decision rule minimizes the overall risk by selecting the action «; for which
R(w;|x) is minimum.

The resulting minimum overall risk is called the Bayes risk and is the best
performance that can be achieved.
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Two-Category Classification

® o deciding true state of nature is wy.

o deciding true state of nature is wo.

Aij = AMi|w;) = loss incurred for deciding w; when the true state of nature is wj.
m Conditional risk:

R(ai|x) = AiP(wi|x) + A2 P(wsa|x) and
R(O&2|X) = /\21P(w1\x) + AQQP(WQ‘X).

® Fundamental rule to decide wi, R(a|x) < R(a|x)
® |n terms of the posterior probabilities, decide w; if

()\21 — All)P(wl‘X) > ()\12 — )\QQ)P(WQ‘X)
(A21 = An)p(x|wr) P(wi) > (A2 = Az2)p(x|ws) Plws)

and decide wy otherwise
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Two-Category Classification

® the preceding rule is equivalent to the following rule:

p(x|wr) (A12 = >\22) P(ws)
>
p(x|ws) A21 — A1) P(wr)
This is called likelihood ratio.

® Optimal decision property:
“If the likelihood ratio exceeds a threshold value independent of the input pattern
X, we can take optimal actions”
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Minimum-Error-Rate Classification

m (Classification: actions are decision on classes

O If action «; is taken and the true state of nature is w; then then decision is correct if
1 =4 and in error if i £ j

m Seek a decision rule that minimizes the probability of error which is the error rate.
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Minimum-Error-Rate Classification

m Define the zero-one loss function

0 ifi=4 . .
{)\(aﬂwj):{ . M#j j=1,....¢c

m Conditional risk becomes

R (a4lx) = Zx\ (aj|w;j) P (wj|x)
= ZP wj|x)

JF#i
=1— P(wi|x)
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Minimum-Error-Rate Classification

® Minimizing the risk requires maximizing P(w;|x) and results in the minimum-error
decision rule

[Decide wi if P(wilx) > Plwjlx) V j;éi.]

B The resulting error is called the Bayes error and is the best performance that can be

achieved.
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Minimum-Error-Rate Classification

P(I|w1)
p(1|‘*’2)

R 7?'1 RZ 7?'1

2

Figure: The likelihood ratio p(x|w1)/p(x|w2). The threshold 6, is computed using the priors P(w1) = 2/3 and
P(w2) = 1/3, and a zero-one loss function. If we penalize mistakes in classifying wo patterns as w1 more than
the converse, we should increase the threshold to 6.
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Classifiers, Discriminant Functions, and Decision Surfaces
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Classifiers

B There are many different ways to represent patterns classifiers.

Action
(e.g., classification)

Discriminant
functions

Figure: The functional structure of a general statistical pattern classifier which includes d inputs and ¢
discriminant functions g;(x). A subsequent step determines which of the discriminant values is the maximum,
and categorizes the input pattern accordingly.
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Discriminant Functions

m A useful way of representing classifiers is through discriminant functions
gi(x),i =1,..., ¢, where the classifier assigns a feature vector x to class w; if

(i) > gi(x) Vj#i]

m For the classifier that minimizes conditional risk

(9i(9) = —R(aslx).

m For the classifier that minimizes error

(9:69) = P(wil).)
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Discriminant Functions

® These functions divide the feature space into ¢ decision regions (R1, ..., R¢),
separated by decision boundaries.

m Note that the results do not change even if we replace every g;(x) by f(g:(x))
where f(-) is a monotonically increasing function (e.g., logarithm).

® This may lead to significant analytical and computational simplifications.
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For example: Minimum-Error-Rate Classification

01(%) = Plwglx) = PElw) Plwi)

" play) P(ey)

gi(x) = p(x|w;) P(w;)

gi(x) = In p(x|w;) + In P(w;),

Figure: In this two-dimensional two-category
classifier, the probability densities are Gaussian,
the decision boundary consists of two
hyperbolas.
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Decision boundary: Two-Category Case

® The two-category case is just a special instance of the multicategory case.

® |nstead of using two discriminant functions g; and go and assigning x to wy if
g1 > g2, it is common to define a single discriminant function

90 = 01(x) — 92(x)

and Decide w; if g(x) > 0; otherwise decide wo

® Minimum-error-rate discriminant function can be written as

9(x) = P(wi]x) — P(w2[x)

p(x|wr)
p(x[wz) P(ws)

g(x) =1n
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Normal/Gaussian Density
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The Normal/Gaussian Density

® Univariate density, N (y, 0?)
O Density which is analytically tractable
0 Continuous density
0 A lot of processes are asymptotically Gaussian
O Handwritten characters, speech sounds are ideal or prototype corrupted by random
process (central limit theorem)

O For z € R:
1 1 (z—p\°
e exp |—=
p(z) — p[ 2( - )]

where 11 = mean (or expected value) of
Elz] = [ap(z)dx
0“ = expected squared deviation or variance
— Bl(x — )@ — )'] = [ (¢ — p)(z — p)'pla)da
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Univariate density

u-26 H-0 n H+o u+2c

Figure: A univariate normal distribution has roughly 95% of its area in the range |z — u| < 20. The peak of the
distribution has value p(u) = 1/v270o

Kundan Kumar Pattern Classification




Normal Density
0000000000000 00000000

Multivariate Density

= Multivariate normal density, N (u, X)), in d-dimensions (i.e., for x € R?) is

P() = gz %P |5 = )5 e mﬂ

where:
x = (x1,2,...,24)" d-dimensional vector
p=(p1, 2, ..., pqg)’ mean vector
= E[x] = [xp(x)dx
> = d X d covariance matrix
— Bl(x— p)(x— p)] = [ (x - m)(x — p)'p(x)dx
13| and ©71 are determinant and inverse respectively
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Multivariate Density

X2

X1

Figure: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean p. The loci of
points of constant density are the ellipses for which (x — p)!*>~ 71 (x — ) is constant, where the eigenvectors of
Y. determine the direction and the corresponding eigenvalues determine the length of the principal axes. The
quantity 72 = (x — u)*Z "1 (x — ) is called the squared Mahalanobis distance from x to
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Discriminant Functions for the Normal Density

®m Discriminant functions for minimum-error-rate classification can be written as

[gi(x) = Inp(x|wi) + In P(wi)j

® For p(x|wi) = N(ui, ;) (case of multivariate normal)

1 d 1
{gi(x) = —§(X - Mi)TZ;1 (x — ;) — 5111271' - §ln 12| + lnP(wi)}
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®m Discriminant functions are

gi(x) = wlx + wjp linear discriminant
where
1
W; = ﬁ’ui
1
wip = —ﬁﬂfuz‘ + In P(w;)

(wip is the threshold or bias for the ith category)

Pattern Classification
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® Decision boundaries are the hyperplanes g;(x) = gj(x), and can be written as
wl (x — %)
where

W =i — [y
1 02 P(’LUZ)

Xo =5 (pi + p15) — In (ki = 15)-
20 T s = 2 Pwy)

® Hyperplane separating R; and R; passes through the point x¢ and is orthogonal to
the vector w.
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® |f the covariances of two distributions are equal and proportional to the identity
matrix, then the distributions are spherical in d dimensions, and the boundary is a
generalized hyperplane of (d — 1) dimensions, perpendicular to the line separating
the means.

Figure: In these 1-, 2-, and 3-dimensional examples, we indicate p(x|w;) and the boundaries for the case
P(w1) = P(w2). In this 3-dimensional case, the grid plane separates R1 from Ra.
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® Special case when P(wj;) are the same for i = 1,..., ¢ is the minimum-distance
classifier that uses the decision rule

assign x to w;+ where i* = arg Z._nllinc l|x — wil]

=1,...
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® Discriminant functions are
9x) = wlx+wio (linear discriminant)
where
:271/%

Wi = — fuz Ty - m + In P(w;).
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® Decision boundaries can be written as

wl(x —x0) =0

w =" (1 — pj)
In(P(w;)/P(w;))
pi = p) TET (i — gy

o= (i + 15) — : (4= ).

® Hyperplane passes through x( but is not necessarily orthogonal to the line between
the means.
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Figure: Probability densities (indicated by the surfaces in two dimensions and ellipsoidal surfaces in three
dimensions) and decision regions for equal but asymmetric Gaussian distributions. The decision hyperplanes need
not be perpendicular to the line connecting the means.
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Case 3: X; =arbitrary

®m Discriminant functions are
gi(x) = x?Wix + wlx +wj (quadratic discriminant)
where
|
Wi =55
wio = = 4 X — 5 In |3;] + In P(w;)

® Decision boundaries are hyperquadrics.

Kundan Kumar Pattern Classification




Normal Density
000000000000 00000e0000

Case 3: X; =arbitrary

Kundan Kumar Pattern Classification



Normal Density
0000000000000 00000e000

=arbitrary

Figure: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.
Conversely, given any hyperquadratic, one can find two Gaussian distributions whose Bayes decision boundary is
that hyperquadric.
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Example to solve

Question:

For a 2-class problem, the prior probabilities are: P(w;) = 1/4 and P(ws) = 3/4. The
class conditional distribution for x = x, that is x has only a single attribute, are
p(z/wy) = N(0,1) and p(x/wa) = N(1,1).

(a) Calculate the threshold boundary value x; which gives the probability of minimum

error.
0 1
)\i' = )
’ [1/2 0]

(b) If the loss matrix is
find the threshold boundary value x; for minimum risk.
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Example to solve

Question:
Two normal distribution are characterized by: P(w;) = P(w2) = 0.5 and

= (D)%)

Sketch the Bayes decision boundary for 31 = 35 = I.
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Example to solve

Question:
Find the decision boundary between w; and wy where

-25

Assuming that samples in w; and ws following Normal distribution. Solution:

1.52% — 921 — 89 +28.1137 =0
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Evaluate Classifiers
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Confusion Matrix

® For a two class-problem, a table of confusion (sometimes also called a confusion
matrix), is a table with two rows and two columns that reports the number of
O false positives (FP),
O false negatives (FN),
O true positives (TP), and
O true negatives(TN)

m |n statistical classification, a confusion matrix, also known as an error matrix.

True condition

Total population Condition positive Condition negative
Predicted condition . False positive,
. True positive
Predicted positive Type | error
condition | predicted condition False negative,

) True negative
negative Type Il error
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Performance Evaluation using confusion matrix

True positive rate (TPR), also called Sensitivity
False positive rate (FPR), also called Fall-out
False negative rate (FNR), also called Miss rate

True negative rate (TNR), also called Specificity

o False positive rate (FPR), Fall-out,
True positive rate (TPR), Recall, Sensitivity,

. bability of false alarm
. . — _ % True positive pro "
probability of detection = ¥ Condition positive — ¥ Fal.s.e OSItIVQ
Z Condition negative

False negative rate (FNR), Miss rate True negative rate (TNR), Specificity (SPC)
= _ 2 False negative = __ I True negative
I Condition positive Z Condition negative
Accuracy (ACC) =

2 True positive + X True negative
2 Total population

Kundan Kumar

Pattern Classification



Evaluation
[e]e]e] lele)

Receiver Operating Characteristics

m |f we use a parameter (e.g.,

Receiver operating characteristic (ROC

a threshold) in our Lo
decision, the plot of TPR o8
vs FPR for different values g .
of the parameter is called s 06 AVC =0
the receiver operating 20
characteristic (ROC) curve. &
® The ROC curve is created 02 [
by plotting the true o random guessing
positive rate (TPR) against e et e Y
the false positive rate
: Figure: Example receiver operating
(FP_R) at various threshold characteristic (ROC) curves for different
settings. setting of the system
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Receiver Operating Characteristics

v

100%/ —

P(TP) .~ -
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Summary

® To minimize the overall risk, choose the action that minimizes the conditional risk
R(alx).

® To minimize the probability of error, choose the class that maximizes the posterior
probability P(w;[x).

m |f there are different penalties for misclassifying patterns from different classes, the
posteriors must be weighted according to such penalties before taking action.

® Do not forget that these decisions are the optimal ones under the assumption that
the “true” values of the probabilities are known.
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Bayes Decision Theory - Discrete Features
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Bayes Decision Theory - Discrete Features

® Components of x are binary or integer valued, x can take only one of m discrete
values vi,va, ...,V
® Case of independent binary features in 2 category problem
Let x = [x1, 22, ..., 24| where each x; is either 0 or 1, with probabilities:
Pi = P(JZZ = 1|w1)
q; = P(CIZZ = 1|(,U2)
p; > q; = x; is more likely to have value 1 if x € wy

® Class conditional probabilities

p(x|w1) Hp (1—p) ™ p(x|ws2) = H ==
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Bayes Decision Theory - Discrete Features

B Then the likelihood ratio is given by

® we know that

g(x)z[% In £y (1)L 12%} 41 2len)

n
G 1—q

Kundan Kumar
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Bayes Decision Theory - Discrete Features

® We note especially that this discrimant function is linear in the x; and thus we can
write

d
g(x) = szam + wo,
i=1

where
i(1—q;
wizlnM i=1,...,d
¢ (1 —p;)
and
¢ 1-p P(wy)
woy = In L4 1n !
0 ; 1 — g P(WZ)

® Decide w; if g(x) > 0 and ws if g(x) <0
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Bayes Decision Theory - Discrete Features

If p; = q;, x; gives us no information about the state of nature, and wy.

If p; > q;, then 1 — p; < 1 — ¢; and w; is positive. Thus in this case a "yes" answer
for x; contribute w; votes for wj.

Furthermore, for any fixed ¢; < 1, w; gets larger as p; gets larger.

On the other hand, if p; < g;, w; is negative and a “yes” answer contributes |w;]|
votes for wo.
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Example to solve

Question:

Compute Bayesian decision for three-dimensional binary features

Suppose two categories consist of independent binary features in three dimensions with
known feature probabilities. Let us construct the Bayesian decision boundary if

P(wi) = P(w2) = 0.5 and the individual components obey:

{nohs o
7 — U.
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Example to solve

Question:

Compute Bayesian decision for three-dimensional binary features

Suppose two categories consist of independent binary features in three dimensions with
known feature probabilities. Let us construct the Bayesian decision boundary if

P(wi) = P(w2) = 0.5 and the individual components obey:

{ p1=p2=0.8, p3 =05
g1 =q2=¢q3=0.5
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Addition Examples:

Question:

13. In many pattern classification problems one has the option either to assign the
pattern to one of ¢ classes, or to reject it as being unrecognizable. If the cost for
rejects is not too high, rejection may be a desirable action. Let

0 i=7 ih,j=1,..c¢

AMaglw;) =< Ay i=c+1

As otherwise,
where A, is the loss incurred for choosing the (¢+ 1)th action, rejection, and A, is the
loss incurred for making a substitution error. Show that the minimum risk is obtained
if we decide w; if P(w;|x) > P(wj|x) for all j and if P(w;|x) > 1 — X./\,, and reject
otherwise. What happens if A, = 0? What happens if A, > A7

Question:

4

What is the inverse of 1 9
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