

Pattern Classification EET3053 Lecture 03: Bayesian Decision Theory

Dr. Kundan Kumar Associate Professor Department of ECE

Faculty of Engineering (ITER) S'O'A Deemed to be University, Bhubaneswar, India-751030 c 2021 Kundan Kumar, All Rights Reserved

- Bayesian Decision Theory is a fundamental statistical approach that quantifies the trade-offs between various decisions using probabilities and costs that accompany such decisions.
- First, we will assume that all probabilities are known.
- Then, we will study the cases where the probabilistic structure is not completely known.

Fish Sorting Example Revisited

- State of nature (class) is a random variable.
- Define ω as the type of fish we observe (state of nature, class) where
	- \Box $\omega = \omega_1$ for sea bass.
	- \Box $\omega = \omega_2$ for salmon.
	- $P(\omega_1)$ is the *a priori probability* that the next fish is a sea bass.
	- $P(\omega_2)$ is the *a priori probability* that the next fish is a salman.

- Prior probabilities reflect our knowledge of how likely each type of fish will appear before we actually see it.
- How can we choose $P(\omega_1)$ and $P(\omega_2)$?
	- \Box Set $P(\omega_1) = P(\omega_2)$ if they are equiprobable (uniform priors).
	- \Box May use different values depending on the fishing area, time of the year, etc.
- Assume there are no other types of fish

$$
\boxed{P(\omega_1)+P(\omega_2)=1}
$$

(exclusivity and exhaustivity)

How can we make a decision with only the prior information? (*Decision rule*)

$$
\begin{bmatrix}\n\text{Decide} & \left\{\n\begin{array}{l}\n\omega_1 & \text{if } P(\omega_1) > P(\omega_2) \\
\omega_2 & \text{otherwise}\n\end{array}\n\right\}
$$

What is the *probability of error* for this decision?

$$
P(error) = \min\{P(\omega_1), P(\omega_2)\}\
$$

Don't you feel that there is some problem in making a decision?

Class-Conditional Probabilities

- Let's try to improve the decision using the lightness measurement x .
- \blacksquare Let x be a continuous random variable.
- **Probability density function** $p(x)$ (evidence)
	- \Box how frequently we will measure a pattern with feature value x (e.g., x corresponds to lightness)
- **Define** $p(x|\omega_i)$ as the class-conditional probability density
	- \Box how frequently we will measure a pattern with feature value x given that pattern belongs to class ω_i
- $p(x|\omega_1)$ and $p(x|\omega_2)$ describe the difference in lightness between populations of sea bass and salmon.

Class-Conditional Probabilities guarantees that the posterior probabilities sum to one, as all good probabilities must. The variation of P(ω^j |x) with x is illustrated in Fig. 2.2 for the case P(ω1)=2/3 and P(ω2)=1/3.

Figure: Hypothetical class-conditional probability density functions (lightness) for salmon/sea-bass

Posterior Probabilities

- Suppose we know $P(\omega_i)$ and $p(x|\omega_i)$ for $j=1,2$ and measure the lightness of a fish as the value x .
- Define $P(\omega_i | x)$ as the a posterior probability (probability of the state of nature being ω_i given the measurement of feature value x)
- \blacksquare We can use the *Bayes formula* to convert the prior probability to the posterior probability

$$
P(\omega_j|x) = \frac{p(x|\omega_j)P(\omega_j)}{p(x)} = \frac{likelihood \times prior}{evidence}
$$

where
$$
p(x) = \sum_{j=1}^{2} p(x|\omega_j) P(\omega_j)
$$

Posterior Probabilities 6 CHAPTER 2. BAYESIAN DECISION THEORY

Figure: Posterior probabilities for the particular priors $P(\omega_1)=2/3$ and $P(\omega_2)=1/3$ for the class-conditional probability densities. Thus in this case, given that a pattern is measured to have feature value $x = 14$, the $g(x)$ a pattern is measured to $\frac{1}{2}$, the probability 0.08 and that it is in ω_1 is 0.02 . At every x the position probability it is in category ω_2 is roughly 0.08, and that it is in ω_1 is 0.92. At every x , the posteriors sum to 1.0.

- $p(x|\omega_i)$ is called the *likelihood* and $p(x)$ is called the *evidence*.
- How can we make a decision after observing the value of x ?

$$
\text{Decide} \quad \begin{cases} \omega_1 & \text{if } P(\omega_1|x) > P(\omega_2|x) \\ \omega_2 & \text{otherwise} \end{cases}
$$

Rewriting the rule gives

Decide ω_1 if $p(x|\omega_1)P(\omega_1) > p(x|\omega_2)P(\omega_2)$ ω_2 otherwise

Note that, at every x, $P(\omega_1|x) + P(\omega_2|x) = 1$

■ What is the probability of error for this decision?

$$
P(error|x) = \begin{cases} P(\omega_1|x) & \text{if we decide } \omega_2 \\ P(\omega_2|x) & \text{if we decide } \omega_1 \end{cases}
$$

What is the average probability of error?

$$
P(error) = \int_{-\infty}^{\infty} P(error, x) dx = \int_{-\infty}^{\infty} P(error|x) p(x) dx
$$

Bayes decision rule minimizes this error because

$$
P(error|x) = \min\{P(\omega_1|x), P(\omega_2|x)\}\
$$

Generalization of the preceding ideas

Generalization of Bayes decision rule

- Use of more than one feature, e.g., $\{x_1, x_2, \ldots, x_d\}$
- Use more than two states of nature, e.g., $\{\omega_1, \omega_2, \ldots, \omega_c\}$
- Allowing actions and not only decide on the state of nature \Box take an action from the set of predefined actions $\{\alpha_1, \alpha_2, \ldots, \alpha_a\}$.
- Introduce a loss of function which is more general than the probability of error \Box Loss incurred $\lambda(\alpha_i|\omega_j)$ for taking action α_i while the true state of nature is $\omega_j.$

Generalization of the preceding ideas

- Allowing the use of more than one feature merely requires replacing the scalar x by the feature vector $\mathrm{x},$ where x is in a d -dimensional Euclidean space, \mathbb{R}^d , called the feature space.
- Allowing actions other than classification primarily allows the *possibility of rejection* – that is, of refusing to make a decision in close cases.
- The *loss function* states exactly how costly each action is, and is used to convert a probability determination into a decision.

Bayesian Decision Theory – Continuous Features

- Let $\{\omega_1, \omega_2, \ldots, \omega_c\}$ be the finite set of c states of nature (or "classes", "categories")
- Let $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ be the finite set of 'a' possible actions.
- \blacksquare Let $\lambda(\alpha_i|\omega_j)$ be the *loss* incurred for taking action α_i when the state of nature is $\omega_j.$
- \blacksquare Let x be the *d*-component vector-valued random variable called the *feature vector*.

Bayesian Decision Theory – Continuous Features

- $p(x|\omega_i)$ is the class-conditional probability density function.
- $P(\omega_i)$ is the prior probability that nature is in state ω_i .
- The posterior probability can be computed as

$$
P(\omega_j|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_j)P(\omega_j)}{p(\mathbf{x})}
$$

where $p(\mathbf{x}) = \sum_{j=1}^{c} p(\mathbf{x}|\omega_j) P(\omega_j)$.

- \blacksquare Suppose we observe ${\rm x}$ and take action $\alpha_i.$
- If the true state of nature is ω_j , we incur the loss $\lambda(\alpha_i|\omega_j)$.
- $\textcolor{black}{\blacksquare}$ The expected loss with taking action α_i is

$$
R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x})
$$

which is also called the *conditional risk*.

Minimum-Risk Classification

- The general *decision rule* $\alpha(x)$ tells us which action to take for observation x.
- We want to find the decision rule that minimizes the overall risk

$$
R = \int R(\alpha(\mathbf{x})|\mathbf{x})p(\mathbf{x})d\mathbf{x}.
$$

- **Bayes decision rule minimizes the overall risk by selecting the action** α_i **for which** $R(\omega_i|\mathrm{x})$ is minimum.
- \blacksquare The resulting minimum overall risk is called the *Bayes risk* and is the best performance that can be achieved.

${\sf Two\text{-}Category\; Classification}$ cation problems. Here action and the true state of nature α

 \blacksquare α_1 deciding true state of nature is ω_1 . cation problems. Here action and the true state of nature stat is understand action action action action action \mathcal{C} corresponds to deciding that it is \mathcal{C} is understanding to decide that it is \mathcal{C} is \mathcal{C} is \mathcal{C} is not action action action action action action declaing true state of nature is ω_1 .

 α_2 deciding true state of nature is ω_2 . i deciding true state of nature is ω_2 .

 $\lambda_{ij} = \lambda(\alpha_i | \omega_j) =$ loss incurred for deciding ω_i when the true state of nature is ω_j .

Conditional risk:

$$
R(\alpha_1|\mathbf{x}) = \lambda_{11} P(\omega_1|\mathbf{x}) + \lambda_{12} P(\omega_2|\mathbf{x}) \text{ and}
$$

$$
R(\alpha_2|\mathbf{x}) = \lambda_{21} P(\omega_1|\mathbf{x}) + \lambda_{22} P(\omega_2|\mathbf{x}).
$$

- \blacksquare Fundamental rule to decide ω_1 , $R(\alpha_1|\mathrm{x}) < R(\alpha_2|\mathrm{x})$
- In terms of the posterior probabilities, decide ω_1 if R accurs of the posterior probabilities, we define ω_1 if

$$
(\lambda_{21} - \lambda_{11})P(\omega_1|\mathbf{x}) > (\lambda_{12} - \lambda_{22})P(\omega_2|\mathbf{x})
$$

$$
(\lambda_{21} - \lambda_{11})p(\mathbf{x}|\omega_1)P(\omega_1) > (\lambda_{12} - \lambda_{22})p(\mathbf{x}|\omega_2)P(\omega_2)
$$

and decide ω_2 otherwise. Another alternative, which follows at once under the reasonable assumption that \mathcal{A}

 \blacksquare the preceding rule is equivalent to the following rule:

$$
\left(\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \left(\frac{\lambda_{12} - \lambda_{22}}{\lambda_{21} - \lambda_{11}}\right) \frac{P(\omega_2)}{P(\omega_1)}\right)
$$

This is called likelihood ratio.

Optimal decision property:

"If the likelihood ratio exceeds a threshold value independent of the input pattern x, we can take optimal actions"

Minimum-Error-Rate Classification

- Classification: actions are decision on classes
	- \Box If action α_i is taken and the true state of nature is ω_j then then decision is correct if $i = j$ and in error if $i \neq j$
- Seek a decision rule that minimizes the *probability of error* which is the *error rate*.

[Bayesian Decision Theory](#page-1-0) [Disc. Functions](#page-23-0) [Normal Density](#page-29-0) [Evaluation](#page-51-0) [BDT-Discrete](#page-57-0) [References](#page-65-0)

Minimum-Error-Rate Classification

Define the zero-one loss function

$$
\lambda(\alpha_i|\omega_j) = \begin{cases} 0 & \text{if } i = j \\ 1 & \text{if } i \neq j \end{cases} i, j = 1, \dots, c
$$

■ Conditional risk becomes

$$
R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x})
$$

$$
= \sum_{j \neq i} P(\omega_j|\mathbf{x})
$$

$$
= 1 - P(\omega_i|\mathbf{x})
$$

Minimum-Error-Rate Classification

 \blacksquare Minimizing the risk requires maximizing $P(\omega_i|\mathrm{x})$ and results in the minimum-error decision rule

Decide
$$
\omega_i
$$
 if $P(\omega_i|\mathbf{x}) > P(\omega_j|\mathbf{x}) \quad \forall \ j \neq i$.

 \blacksquare The resulting error is called the *Bayes error* and is the best performance that can be achieved.

[Bayesian Decision Theory](#page-1-0) Disc. Functions Normal Density Evaluation BDT-Discrete [References](#page-65-0) [i](#page-17-0)[n](#page-18-0) [c](#page-20-0)[l](#page-21-0)[as](#page-22-0)sifyin[g](#page-23-0) [ω](#page-24-0)[1](#page-26-0) [p](#page-27-0)[a](#page-28-0)tterns as ω[2](#page-29-0) [m](#page-30-0)[o](#page-32-0)[r](#page-33-0)[e](#page-34-0) [t](#page-35-0)[h](#page-36-0)[a](#page-38-0)[n](#page-39-0) [t](#page-40-0)[h](#page-41-0)[e](#page-43-0) [c](#page-44-0)[o](#page-45-0)[n](#page-46-0)[v](#page-47-0)[e](#page-48-0)[r](#page-49-0)[se](#page-50-0) (i.e., [λ](#page-52-0)[21](#page-53-0) [>](#page-55-0) λ12), th[e](#page-57-0)[n](#page-58-0) [E](#page-60-0)[q](#page-61-0)[.](#page-62-0) [17](#page-64-0)

Minimum-Error-Rate Classification and the threshold experience of the range of x values for which we classification Error rided diasomederon

 $P(\omega_2)=1/3$, and a zero-one loss function. If we penalize mistakes in classifying ω_2 patterns as ω_1 more than the converse, we should increase the threshold to $\theta_b.$ Figure: The likelihood ratio $p(x|\omega_1)/p(x|\omega_2)$. The threshold θ_a is computed using the priors $P(\omega_1) = 2/3$ and

Classifiers, Discriminant Functions, and Decision Surfaces

■ There are many different ways to represent patterns classifiers.

work representation of a classifier is in $\mathcal{L}_\mathcal{F}$ in $\mathcal{L}_\mathcal{F}$ is illustrated in $\mathcal{L}_\mathcal{F}$

Figure: The functional structure of a general statistical pattern classifier which includes d inputs and c discriminant functions $g_i(\mathbf{x})$. A subsequent step determines which of the discriminant values is the maximum, and categorizes the input pattern accordingly.

Discriminant Functions

A useful way of representing classifiers is through *discriminant functions* $g_i(\mathrm{x}), i=1,\ldots,c$, where the classifier assigns a feature vector x to class ω_i if

$$
g_i(\mathbf{x}) > g_j(\mathbf{x}) \quad \forall \ j \neq i.
$$

For the classifier that minimizes conditional risk

$$
\left(g_i(\mathbf{x}) = -R(\alpha_i|\mathbf{x}).\right)
$$

 \blacksquare For the classifier that minimizes error

$$
g_i(\mathbf{x}) = P(\omega_i|\mathbf{x}).
$$

- These functions divide the feature space into c decision regions $(\mathcal{R}_1, \ldots, \mathcal{R}_c)$,
- separated by *decision boundaries*. Note that the results do not change even if we replace every $q_i(\mathbf{x})$ by $f(q_i(\mathbf{x}))$
- where $f(\cdot)$ is a monotonically increasing function (e.g., logarithm).
- This may lead to significant analytical and computational simplifications.

[Bayesian Decision Theory](#page-1-0) **[Disc. Functions](#page-23-0)** [Normal Density](#page-29-0) **Exaluation** [BDT-Discrete](#page-57-0) [References](#page-65-0) Even the discriminant discriminant functions can be written in a variety of functions of forms, the f [de](#page-8-0)[ci](#page-9-0)[si](#page-10-0)[on](#page-11-0) [r](#page-12-0)[u](#page-13-0)[les](#page-14-0)[ar](#page-16-0)[e](#page-17-0) [eq](#page-18-0)[ui](#page-19-0)[va](#page-20-0)[le](#page-21-0)[nt](#page-22-0). The effe[ct](#page-23-0) [o](#page-24-0)[f](#page-25-0) [an](#page-26-0)[y](#page-27-0) [de](#page-28-0)cision rule is to di[vid](#page-29-0)[e](#page-30-0) [th](#page-31-0)[e](#page-32-0) [fe](#page-33-0)[a](#page-34-0)[tu](#page-35-0)[re](#page-36-0)

For example: Minimum-Error-Rate Classification discriminant functions (Fig. 2.6).

Figure: In this two-dimensional two-category classifier, the probability densities are Gaussian, 2.4.2 The Two-Category Case hyperbolas. While the two-category case is just a special instance of the multicategory case, it has not the multicategory classifier, the probability defisities are Gaussian,
the decision boundary consists of two decision rules are equivalent. The effect of any decision rule is to divide the feature is to divide the feature region Rights for the decision rule calls for us to α the regions are separated α .

$$
g_i(\mathbf{x}) = P(\omega_i|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_i)P(\omega_i)}{\sum_{j=1}^{c} p(\mathbf{x}|\omega_j)P(\omega_j)}
$$

$$
g_i(\mathbf{x}) = p(\mathbf{x}|\omega_i)P(\omega_i)
$$

$$
g_i(\mathbf{x}) = \ln p(\mathbf{x}|\omega_i) + \ln P(\omega_i),
$$

[Bayesian Decision Theory](#page-1-0) [Disc. Functions](#page-23-0) [Normal Density](#page-29-0) [Evaluation](#page-51-0) [BDT-Discrete](#page-57-0) [References](#page-65-0) n Theory **2.5. The Constanting Constanting**

Decision boundary: Two-Category Case

- **The two-category case is just a special instance of the multicategory case.**
- Instead of using two discriminant functions q_1 and q_2 and assigning x to ω_1 if $g_1 > g_2$, it is common to define a single discriminant function

 $g(x) \equiv g_1(x) - g_2(x)$ and to use the following decision rule: $\overline{O(1)}$ if $\overline{O(1)}$ if $\overline{O(1)}$ function g(\overline{a}), and classifies \overline{a} and \overline{a} algebraic sign of the result. Of the resul

discriminant functions gradient functions $\mathcal{L}^{\mathcal{L}}$ and $\mathcal{L}^{\mathcal{L}}$ is more common common common common

and Decide ω_1 if $g(\mathrm{x})>0$; otherwise decide ω_2

■ Minimum-error-rate discriminant function can be written as

$$
g(\mathbf{x}) = P(\omega_1|\mathbf{x}) - P(\omega_2|\mathbf{x})
$$

$$
g(\mathbf{x}) = \ln \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}.
$$

Normal/Gaussian Density

The Normal/Gaussian Density

- \blacksquare Univariate density, $N(\mu,\sigma^2)$
	- \Box Density which is analytically tractable
	- \Box Continuous density
	- \Box A lot of processes are asymptotically Gaussian
	- \Box Handwritten characters, speech sounds are ideal or prototype corrupted by random process (central limit theorem)
	- \Box For $x \in \mathbb{R}$:

$$
p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]
$$

where
$$
\mu
$$
 = mean (or expected value) of x
\n
$$
= E[x] = \int x p(x) dx
$$
\n
$$
\sigma^2
$$
\n
$$
= \text{expected squared deviation or variance}
$$
\n
$$
= E[(x - \mu)(x - \mu)^t] = \int (x - \mu)(x - \mu)^t p(x) dx
$$

Univariate density that x is distributed normally with mean \sim from normal distributions tend to cluster about the mean, with a spread related to α

Figure: A univariate normal distribution has roughly 95% of its area in the range $|x - \mu| \le 2\sigma$. The peak of the
distribution has value $p(\mu) = 1/\sqrt{2\pi}\sigma$ x_1 as shown. The peak of the peak of the distribution has value $p(\mu) = 1/\sqrt{2\pi}\sigma$

Multivariate Density

■ Multivariate normal density, $N(\mu, \Sigma)$, in d -dimensions (i.e., for $\mathrm{x} \in \mathbb{R}^d$) is

$$
p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu)^t \Sigma^{-1} (x - \mu) \right]
$$

where:

 $\mathrm{x} = (x_1, x_2, \ldots, x_d)^T$ d -dimensional vector $\mu=(\mu_1,\mu_2,\ldots,\mu_d)^T$ mean vector $= E[x] = \int x p(x) dx$ $\Sigma = d \times d$ covariance matrix $= E[(x - \mu)(x - \mu)^t] = \int (x - \mu)(x - \mu)^t p(x) dx$ $|\Sigma|$ and Σ^{-1} are determinant and inverse respectively

20 CHAPTER 2. BAYESIAN DECISION THEORY

Multivariate Density

Figure: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean μ . The loci of points of constant density are the ellipses for which $(x - \mu)^t \Sigma^{-1} (x - \mu)$ is constant, where the eigenvectors of Σ determine the direction and the corresponding eigenvalues determine the length of the principal axes. The quantity $r^2 = (x - \mu)^t \Sigma^{-1} (x - \mu)$ is called the squared *Mahalanobis distance* from x to μ

Discriminant Functions for the Normal Density

Discriminant functions for minimum-error-rate classification can be written as

 $g_i(\mathbf{x}) = \ln \mathrm{p}(\mathbf{x}|\omega_i) + \ln \mathrm{P}(\omega_i)$

F For $p(\mathbf{x}|\omega_i) = N(\mu_i, \Sigma_i)$ (case of multivariate normal)

$$
g_i(x) = -\frac{1}{2}(x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\Sigma_i| + \ln P(\omega_i)
$$

Discriminant functions are

$$
g_i(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0}
$$
 linear discriminant

where

$$
w_i = \frac{1}{\sigma^2} \mu_i
$$

$$
w_{i0} = -\frac{1}{2\sigma^2} \mu_i^T \mu_i + \ln P(w_i)
$$

 $(w_{i0}$ is the threshold or bias for the *i*th category)

Decision boundaries are the hyperplanes $g_i(x) = g_j(x)$, and can be written as

$$
\mathbf{w}^T(\mathbf{x}-\mathbf{x}_0)
$$

where

w =
$$
\mu_i - \mu_j
$$

x₀ = $\frac{1}{2}(\mu_i + \mu_j) - \frac{\sigma^2}{||\mu_i - \mu_j||^2} \ln \frac{P(w_i)}{P(w_j)}(\mu_i - \mu_j).$

Hyperplane separating \mathcal{R}_i and \mathcal{R}_j passes through the point x_0 and is orthogonal to the vector w.

 \blacksquare If the covariances of two distributions are equal and proportional to the identity matrix, then the distributions are spherical in d dimensions, and the boundary is a generalized hyperplane of $(d-1)$ dimensions, perpendicular to the line separating
. the means.

Figure: In these 1-, 2-, and 3-dimensional examples, we indicate $p(x|w_i)$ and the boundaries for the case $P(w_1) = P(w_2)$. In this 3-dimensional case, the grid plane separates \mathcal{R}_1 from \mathcal{R}_2 .

 \overline{c}

Kundan Kumar

0

Case 1: $\Sigma_i = \sigma^2 I$

0

Figure: A the priors are changed, the decision boundary shifts; for sufficiently disparate priors the boundary will not lie between the means of these 1-, 2-, and 3-dimensional spherical Gaussian distributions.

Special case when $P(w_i)$ are the same for $i = 1, \ldots, c$ is the minimum-distance classifier that uses the decision rule

assign x to
$$
w_{i^*}
$$
 where $i^* = \arg \min_{i=1,\dots,c} ||x - \mu_i||$

$$
\mathcal{L}^{\text{max}}(\mathcal{L}^{\text{max}}(\mathcal{L}^{\text{max}}))
$$

Discriminant functions are

$$
g(\mathbf{x}) = \mathbf{w}_i^T \mathbf{x} + w_{i0} \quad \text{(linear discriminant)}
$$

where

$$
w_i = \Sigma^{-1} \mu_i
$$

$$
w_{i0} = -\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \ln P(w_i).
$$

Decision boundaries can be written as

$$
\mathbf{w}^T(\mathbf{x} - \mathbf{x}_0) = 0
$$

$$
w = \Sigma^{-1} (\mu_i - \mu_j)
$$

\n
$$
x_0 = \frac{1}{2} (\mu_i + \mu_j) - \frac{\ln(P(w_i)/P(w_j))}{(\mu_i - \mu_j)^T \Sigma^{-1} (\mu_i - \mu_j)} (\mu_i - \mu_j).
$$

Hyperplane passes through x_0 but is not necessarily orthogonal to the line between the means.

Case 2:
$$
\Sigma_i = \Sigma
$$

5

 \overline{a}

Case 2: $\Sigma_i = \Sigma$

Figure: Probability densities (indicated by the surfaces in two dimensions and Figure: Probability densities (indicated by the surfaces in two dimensions and ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmetric Gaussian distributions. The decision hyperplanes need
ast he gauges disclents the line assumetive the gaseas gaussian distribution of the definition of the decision hyperplanes need not be perpendicular to the method of not be perpendicular to the line connecting the means.

Case 3: Σ_i = arbitrary

Discriminant functions are

$$
g_i(\mathbf{x}) = \mathbf{x}^T \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + w_{i0} \qquad \text{(quadratic discriminant)}
$$

where

$$
W_i = -\frac{1}{2} \Sigma_i^{-1}
$$

\n
$$
w_i = \Sigma_i^{-1} \mu_i
$$

\n
$$
w_{i0} = -\frac{1}{2} \mu_i^T \Sigma_i^{-1} \mu_i - \frac{1}{2} \ln |\Sigma_i| + \ln P(w_i)
$$

Decision boundaries are hyperquadrics.

Case 3: Σ_i = arbitrary

10

-10

Case 3: $\Sigma_i =$ arbitrary

10

-10

Figure: Arbitrary Gaussian distributions lead to Bayes decision boundaries that Figure: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics. Conversely, given any hyperquadratic, one can find two Gaussian distributions whose Bayes decision boundary is
'' G aussian distributions whose Bayes decision boundary is that hyperquadric. that hyperquadric.

Question:

For a 2-class problem, the prior probabilities are: $P(w_1) = 1/4$ and $P(w_2) = 3/4$. The class conditional distribution for $x = x$, that is x has only a single attribute, are $p(x/w_1) = N(0, 1)$ and $p(x/w_2) = N(1, 1)$.

- (a) Calculate the threshold boundary value x_t which gives the probability of minimum error.
- (b) If the loss matrix is

$$
\lambda_{ij} = \left[\begin{array}{cc} 0 & 1 \\ 1/2 & 0 \end{array} \right],
$$

find the threshold boundary value x_t for minimum risk.

Example to solve

Question:

Two normal distribution are characterized by: $P(w_1) = P(w_2) = 0.5$ and

$$
\mu_1 = \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \mu_2 = \left(\begin{array}{c} 0 \\ -1 \end{array} \right)
$$

Sketch the Bayes decision boundary for $\Sigma_1 = \Sigma_2 = I$.

distribution. Because the overall prior probabilities are the same (i.e., the integral over

Example to solve

Question:

Find the decision boundary between ω_1 and ω_2 where lower than the point midway between the two means, as can be seen in the decision of \mathcal{L}

Assuming that samples in ω_1 and ω_2 following Normal distribution. *Solution:* $1.5x_1^2 - 9x_1 - 8x_2 + 28.1137 = 0$

Evaluate Classifiers

- For a two class-problem, a table of confusion (sometimes also called a confusion matrix), is a table with two rows and two columns that reports the number of
	- \Box false positives (FP),
	- \Box false negatives (FN),
	- \Box true positives (TP), and
	- \Box true negatives(TN)
- \blacksquare In statistical classification, a confusion matrix, also known as an error matrix.

Performance Evaluation using confusion matrix

- True positive rate (TPR), also called Sensitivity
- False positive rate (FPR), also called Fall-out
- False negative rate (FNR), also called Miss rate
- True negative rate (TNR), also called Specificity

 Σ Total population

[Bayesian Decision Theory](#page-1-0) [Disc. Functions](#page-23-0) [Normal Density](#page-29-0) [Evaluation](#page-51-0) [BDT-Discrete](#page-57-0) [References](#page-65-0)

Receiver Operating Characteristics

- If we use a parameter $(e.g.,$ a threshold) in our decision, the plot of TPR vs FPR for different values of the parameter is called the receiver operating characteristic (ROC) curve.
- The ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various threshold positive rate (TPR) against
the false positive rate
(FPR) at various threshold
settings.
term of the system of the system of the system of the system
setting of the system

Figure: Example receiver operating characteristic (ROC) curves for different setting of the system

[Bayesian Decision Theory](#page-1-0) [Disc. Functions](#page-23-0) [Normal Density](#page-29-0) [Evaluation](#page-51-0) [BDT-Discrete](#page-57-0) [References](#page-65-0)

Receiver Operating Characteristics

- To minimize the overall risk, choose the action that minimizes the conditional risk $R(\alpha|x)$.
- To minimize the probability of error, choose the class that maximizes the posterior probability $P(\omega_i | x)$.
- If there are different penalties for misclassifying patterns from different classes, the posteriors must be weighted according to such penalties before taking action.
- Do not forget that these decisions are the optimal ones under the assumption that the "true" values of the probabilities are known.

Bayes Decision Theory - Discrete Features

Bayes Decision Theory - Discrete Features

- **Components of x are binary or integer valued, x can take only one of m discrete** values v_1, v_2, \ldots, v_m
- Case of independent binary features in 2 category problem Let $\mathbf{x} = [x_1, x_2, \dots, x_d]^t$ where each x_i is either 0 or 1, with probabilities: $p_i = P(x_i = 1 | \omega_1)$ $q_i = P(x_i = 1 | \omega_2)$

 $p_i > q_i \Rightarrow x_i$ is more likely to have value 1 if $\mathrm{x} \in \omega_1$

■ Class conditional probabilities

$$
p(\mathbf{x}|\omega_1) = \prod_{i=1}^d p_i^{x_i} (1 - p_i)^{1 - x_i}
$$

$$
^{1-x_{i}}\left[p(x|\omega_{2})=\prod_{i=1}^{d}q_{i}^{x_{i}}(1-q_{i})^{1-x_{i}}\right]
$$

[Bayesian Decision Theory](#page-1-0) [Disc. Functions](#page-23-0) [Normal Density](#page-29-0) [Evaluation](#page-51-0) [BDT-Discrete](#page-57-0) [References](#page-65-0) $\frac{1}{2}$ $\frac{1}{2}$ Disc Functions

Bayes Decision Theory - Discrete Features Decision Theory - Discrete Features p^xⁱ ⁱ (1 − pi)

 \blacksquare Then the likelihood ratio is given by Thus, a dichotomizer can be viewed as a machine that computes a single discriminant α

$$
\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} = \prod_{i=1}^d \left(\frac{p_i}{q_i}\right)^{x_i} \left(\frac{1-p_i}{1-q_i}\right)^{1-x_i}
$$

we know that Then the likelihood ratio is given by

writer.

$$
g(\mathbf{x}) = \ln \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} + \ln \frac{P(\omega_1)}{P(\omega_2)}
$$

 $\frac{2}{3}$ \blacksquare Therefore discriminant function will be

$$
g(\mathbf{x}) = \sum_{i=1}^{d} \left[x_i \ln \frac{p_i}{q_i} + (1 - x_i) \ln \frac{1 - p_i}{1 - q_i} \right] + \ln \frac{P(\omega_1)}{P(\omega_2)}
$$

[Bayesian Decision Theory](#page-1-0) [Disc. Functions](#page-23-0) [Normal Density](#page-29-0) [Evaluation](#page-51-0) [BDT-Discrete](#page-57-0) [References](#page-65-0) 000000000000000000000

Bayes Decision Theory - Discrete Features

 \blacksquare We note especially that this discrimant function is linear in the x_i and thus we can write write

i=1

$$
g(\mathbf{x}) = \sum_{i=1}^d w_i x_i + w_0,
$$

1 − qili
1 − qili
1 − qili

where

$$
w_i = \ln \frac{p_i(1 - q_i)}{q_i(1 - p_i)} \qquad i = 1, ..., d
$$

and

$$
w_0 = \sum_{i=1}^d \ln \frac{1-p_i}{1-q_i} + \ln \frac{P(\omega_1)}{P(\omega_2)}.
$$

Decide ω_1 if $g(x) > 0$ and ω_2 if $g(x) \le 0$ we decide when $\frac{d}{dx}$ if $g(x) = 0$.

Bayes Decision Theory - Discrete Features

- If $p_i = q_i$, x_i gives us no information about the state of nature, and ω_0 .
- If $p_i > q_i$, then $1 p_i < 1 q_i$ and w_i is positive. Thus in this case a "yes" answer for x_i contribute w_i votes for ω_1 .
- **Furthermore, for any fixed** $q_i < 1$, w_i gets larger as p_i gets larger.
- \blacksquare On the other hand, if $p_i < q_i$, w_i is negative and a "yes" answer contributes $|w_i|$ votes for ω_2 .

Question:

Compute Bayesian decision for three-dimensional binary features

Suppose two categories consist of independent binary features in three dimensions with known feature probabilities. Let us construct the Bayesian decision boundary if $P(\omega_1) = P(\omega_2) = 0.5$ and the individual components obey:

$$
\begin{cases} p_i = 0.8\\ q_i = 0.5 \end{cases} i = 1, 2, 3
$$

Question:

Compute Bayesian decision for three-dimensional binary features

Suppose two categories consist of independent binary features in three dimensions with known feature probabilities. Let us construct the Bayesian decision boundary if $P(\omega_1) = P(\omega_2) = 0.5$ and the individual components obey:

> $\int p_1 = p_2 = 0.8, p_3 = 0.5$ $q_1 = q_2 = q_3 = 0.5$

Addition Examples:

Question:

13. In many pattern classification problems one has the option either to assign the pattern to one of c classes, or to reject it as being unrecognizable. If the cost for rejects is not too high, rejection may be a desirable action. Let

$$
\lambda(\alpha_i|\omega_j) = \begin{cases} 0 & i = j & i, j = 1, ..., c \\ \lambda_r & i = c + 1 \\ \lambda_s & \text{otherwise,} \end{cases}
$$

where λ_r is the loss incurred for choosing the $(c+1)$ th action, rejection, and λ_s is the loss incurred for making a substitution error. Show that the minimum risk is obtained if we decide ω_i if $P(\omega_i|\mathbf{x}) \ge P(\omega_i|\mathbf{x})$ for all j and if $P(\omega_i|\mathbf{x}) \ge 1 - \lambda_r/\lambda_s$, and reject otherwise. What happens if $\lambda_r = 0$? What happens if $\lambda_r > \lambda_s$?

are optimal for such problems: $\frac{1}{2}$ What is the inverse of $\begin{bmatrix} 4 & 4 \\ 1 & 2 \end{bmatrix}$? $p(\omega)$ is the 1, $p(\omega)$ in $p(\omega)$ in $p(\omega)$ Question:

References

- [1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.
- [2] Gose, E. (1997). Pattern recognition and image analysis.

Thank you!