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Bayesian Decision Theory

� Bayesian Decision Theory is a fundamental statistical approach that quantifies the
trade-offs between various decisions using probabilities and costs that accompany
such decisions.

� First, we will assume that all probabilities are known.

� Then, we will study the cases where the probabilistic structure is not completely
known.
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Fish Sorting Example Revisited

� State of nature (class) is a random variable.
� Define ω as the type of fish we observe (state of nature, class) where

� ω = ω1 for sea bass,
� ω = ω2 for salmon.
� P (ω1) is the a priori probability that the next fish is a sea bass.
� P (ω2) is the a priori probability that the next fish is a salman.
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Prior Probabilities

� Prior probabilities reflect our knowledge of how likely each type of fish will appear
before we actually see it.

� How can we choose P (ω1) and P (ω2)?
� Set P (ω1) = P (ω2) if they are equiprobable (uniform priors).
� May use different values depending on the fishing area, time of the year, etc.

� Assume there are no other types of fish

P (ω1) + P (ω2) = 1

(exclusivity and exhaustivity)
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Making a Decision

� How can we make a decision with only the prior information? (Decision rule)

Decide

{
ω1 if P (ω1) > P (ω2)
ω2 otherwise

� What is the probability of error for this decision?

P (error) = min{P (ω1), P (ω2)}

� Don’t you feel that there is some problem in making a decision?
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Class-Conditional Probabilities

� Let’s try to improve the decision using the lightness measurement x.

� Let x be a continuous random variable.
� Probability density function p(x) (evidence)

� how frequently we will measure a pattern with feature value x (e.g., x corresponds to
lightness)

� Define p(x|ωj) as the class-conditional probability density
� how frequently we will measure a pattern with feature value x given that pattern

belongs to class ωj

� p(x|ω1) and p(x|ω2) describe the difference in lightness between populations of sea
bass and salmon.
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Class-Conditional Probabilities

2.1. INTRODUCTION 5

Bayes’ formula shows that by observing the value of x we can convert the prior
probability P (ωj) to the a posteriori probability (or posterior) probability P (ωj |x) posterior
— the probability of the state of nature being ωj given that feature value x has
been measured. We call p(x|ωj) the likelihood of ωj with respect to x (a term likelihood
chosen to indicate that, other things being equal, the category ωj for which p(x|ωj)
is large is more “likely” to be the true category). Notice that it is the product of the
likelihood and the prior probability that is most important in determining the psterior
probability; the evidence factor, p(x), can be viewed as merely a scale factor that
guarantees that the posterior probabilities sum to one, as all good probabilities must.
The variation of P (ωj |x) with x is illustrated in Fig. 2.2 for the case P (ω1) = 2/3 and
P (ω2) = 1/3.
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Figure 2.1: Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is
in category ωi. If x represents the length of a fish, the two curves might describe
the difference in length of populations of two types of fish. Density functions are
normalized, and thus the area under each curve is 1.0.

If we have an observation x for which P (ω1|x) is greater than P (ω2|x), we would
naturally be inclined to decide that the true state of nature is ω1. Similarly, if P (ω2|x)
is greater than P (ω1|x), we would be inclined to choose ω2. To justify this decision
procedure, let us calculate the probability of error whenever we make a decision.
Whenever we observe a particular x,

P (error|x) =

{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1.
(4)

Clearly, for a given x we can minimize the probability of error by deciding ω1 if
P (ω1|x) > P (ω2|x) and ω2 otherwise. Of course, we may never observe exactly the
same value of x twice. Will this rule minimize the average probability of error? Yes,
because the average probability of error is given by

Figure: Hypothetical class-conditional probability density functions (lightness) for salmon/sea-bass
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Posterior Probabilities

� Suppose we know P (ωj) and p(x|ωj) for j = 1, 2 and measure the lightness of a
fish as the value x.

� Define P (ωj |x) as the a posterior probability (probability of the state of nature
being ωj given the measurement of feature value x)

� We can use the Bayes formula to convert the prior probability to the posterior
probability

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)
=
likelihood× prior

evidence

where p(x) =
2∑
j=1

p(x|ωj)P (ωj)
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Posterior Probabilities6 CHAPTER 2. BAYESIAN DECISION THEORY
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Figure 2.2: Posterior probabilities for the particular priors P(ω1) = 2/3 and P(ω2) =
1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this case,
given that a pattern is measured to have feature value x = 14, the probability it is
in category ω2 is roughly 0.08, and that it is in ω1 is 0.92. At every x, the posteriors
sum to 1.0.

P (error) =

∞∫

−∞

P (error, x) dx =

∞∫

−∞

P (error|x)p(x) dx (5)

and if for every x we insure that P (error|x) is as small as possible, then the integral
must be as small as possible. Thus we have justified the following Bayes’ decision
rule for minimizing the probability of error:Bayes’

decision
rule Decide ω1 if P (ω1|x) > P (ω2|x); otherwise decide ω2, (6)

and under this rule Eq. 4 becomes

P (error|x) = min [P (ω1|x), P (ω2|x)]. (7)

This form of the decision rule emphasizes the role of the posterior probabilities.
By using Eq. 1, we can instead express the rule in terms of the conditional and prior
probabilities. First note that the evidence, p(x), in Eq. 1 is unimportant as far asevidence
making a decision is concerned. It is basically just a scale factor that states how
frequently we will actually measure a pattern with feature value x; its presence in
Eq. 1 assures us that P (ω1|x) + P (ω2|x) = 1. By eliminating this scale factor, we
obtain the following completely equivalent decision rule:

Decide ω1 if p(x|ω1)P (ω1) > p(x|ω2)P (ω2); otherwise decide ω2. (8)

Some additional insight can be obtained by considering a few special cases. If
for some x we have p(x|ω1) = p(x|ω2), then that particular observation gives us no

Figure: Posterior probabilities for the particular priors P (ω1) = 2/3 and P (ω2) = 1/3 for the class-conditional
probability densities. Thus in this case, given that a pattern is measured to have feature value x = 14, the
probability it is in category ω2 is roughly 0.08, and that it is in ω1 is 0.92. At every x, the posteriors sum to 1.0.
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Making a Decision

� p(x|ωj) is called the likelihood and p(x) is called the evidence.

� How can we make a decision after observing the value of x?

Decide

{
ω1 if P (ω1|x) > P (ω2|x)
ω2 otherwise

� Rewriting the rule gives

Decide

{
ω1 if p(x|ω1)P (ω1) > p(x|ω2)P (ω2)
ω2 otherwise

� Note that, at every x, P (ω1|x) + P (ω2|x) = 1
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Probability of Error

� What is the probability of error for this decision?

P (error|x) =

{
P (ω1|x) if we decide ω2

P (ω2|x) if we decide ω1

� What is the average probability of error?

P (error) =

∫ ∞

−∞
P (error, x)dx =

∫ ∞

−∞
P (error|x)p(x)dx

� Bayes decision rule minimizes this error because

P (error|x) = min{P (ω1|x), P (ω2|x)}

10/66 Kundan Kumar Pattern Classification



Bayesian Decision Theory Disc. Functions Normal Density Evaluation BDT-Discrete References

Generalization of the preceding ideas

Generalization of Bayes decision rule

� Use of more than one feature, e.g., {x1, x2, . . . , xd}
� Use more than two states of nature, e.g., {ω1, ω2, . . . , ωc}
� Allowing actions and not only decide on the state of nature

� take an action from the set of predefined actions {α1, α2, . . . , αa}.
� Introduce a loss of function which is more general than the probability of error

� Loss incurred λ(αi|ωj) for taking action αi while the true state of nature is ωj .
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Generalization of the preceding ideas

� Allowing the use of more than one feature merely requires replacing the scalar x by
the feature vector x, where x is in a d-dimensional Euclidean space, Rd, called the
feature space.

� Allowing actions other than classification primarily allows the possibility of rejection
– that is, of refusing to make a decision in close cases.

� The loss function states exactly how costly each action is, and is used to convert a
probability determination into a decision.
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Bayesian Decision Theory – Continuous Features

� Let {ω1, ω2, . . . , ωc} be the finite set of c states of nature (or “classes”,
“categories”)

� Let {α1, α2, . . . , αa} be the finite set of ‘a’ possible actions.

� Let λ(αi|ωj) be the loss incurred for taking action αi when the state of nature is ωj .

� Let x be the d-component vector-valued random variable called the feature vector.
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Bayesian Decision Theory – Continuous Features

� p(x|ωj) is the class-conditional probability density function.

� P (ωj) is the prior probability that nature is in state ωj .

� The posterior probability can be computed as

P (ωj |x) =
p(x|ωj)P (ωj)

p(x)

where p(x) =
∑c

j=1 p(x|ωj)P (ωj).
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Conditional Risk

� Suppose we observe x and take action αi.

� If the true state of nature is ωj , we incur the loss λ(αi|ωj).

� The expected loss with taking action αi is

R(αi|x) =

c∑

j=1

λ(αi|ωj)P (ωj |x)

which is also called the conditional risk.
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Minimum-Risk Classification

� The general decision rule α(x) tells us which action to take for observation x.

� We want to find the decision rule that minimizes the overall risk

R =

∫
R(α(x)|x)p(x)dx.

� Bayes decision rule minimizes the overall risk by selecting the action αi for which
R(ωi|x) is minimum.

� The resulting minimum overall risk is called the Bayes risk and is the best
performance that can be achieved.

16/66 Kundan Kumar Pattern Classification



Bayesian Decision Theory Disc. Functions Normal Density Evaluation BDT-Discrete References

Two-Category Classification

� α1 deciding true state of nature is ω1.
α2 deciding true state of nature is ω2.
λij = λ(αi|ωj) = loss incurred for deciding ωi when the true state of nature is ωj .

� Conditional risk:

8 CHAPTER 2. BAYESIAN DECISION THEORY

R(αi|x) =

c∑

j=1

λ(αi|ωj)P (ωj |x). (11)

In decision-theoretic terminology, an expected loss is called a risk, and R(αi|x) isrisk
called the conditional risk. Whenever we encounter a particular observation x, we can
minimize our expected loss by selecting the action that minimizes the conditional risk.
We shall now show that this Bayes decision procedure actually provides the optimal
performance on an overall risk.

Stated formally, our problem is to find a decision rule against P (ωj) that mini-
mizes the overall risk. A general decision rule is a function α(x) that tells us whichdecision

rule action to take for every possible observation. To be more specific, for every x the
decision function α(x) assumes one of the a values α1, ..., αa. The overall risk R is the
expected loss associated with a given decision rule. Since R(αi|x) is the conditional
risk associated with action αi, and since the decision rule specifies the action, the
overall risk is given by

R =

∫
R(α(x)|x)p(x) dx, (12)

where dx is our notation for a d-space volume element, and where the integral extends
over the entire feature space. Clearly, if α(x) is chosen so that R(αi(x)) is as small
as possible for every x, then the overall risk will be minimized. This justifies the
following statement of the Bayes decision rule: To minimize the overall risk, compute
the conditional risk

R(αi|x) =

c∑

j=1

λ(αi|ωj)P (ωj |x) (13)

for i = 1,...,a and select the action αi for which R(αi|x) is minimum.∗ The resulting
minimum overall risk is called the Bayes risk, denoted R∗, and is the best performanceBayes risk
that can be achieved.

2.2.1 Two-Category Classification

Let us consider these results when applied to the special case of two-category classifi-
cation problems. Here action α1 corresponds to deciding that the true state of nature
is ω1, and action α2 corresponds to deciding that it is ω2. For notational simplicity,
let λij = λ(αi|ωj) be the loss incurred for deciding ωi when the true state of nature
is ωj . If we write out the conditional risk given by Eq. 13, we obtain

R(α1|x) = λ11P (ω1|x) + λ12P (ω2|x) and

R(α2|x) = λ21P (ω1|x) + λ22P (ω2|x). (14)

There are a variety of ways of expressing the minimum-risk decision rule, each
having its own minor advantages. The fundamental rule is to decide ω1 if R(α1|x) <
R(α2|x). In terms of the posterior probabilities, we decide ω1 if

(λ21 − λ11)P (ω1|x) > (λ12 − λ22)P (ω2|x). (15)

∗ Note that if more than one action minimizes R(α|x), it does not matter which of these actions is
taken, and any convenient tie-breaking rule can be used.

� Fundamental rule to decide ω1, R(α1|x) < R(α2|x)

� In terms of the posterior probabilities, decide ω1 if
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2.3. MINIMUM-ERROR-RATE CLASSIFICATION 9

Ordinarily, the loss incurred for making an error is greater than the loss incurred for
being correct, and both of the factors λ21 − λ11 and λ12 − λ22 are positive. Thus in
practice, our decision is generally determined by the more likely state of nature, al-
though we must scale the posterior probabilities by the loss differences. By employing
Bayes’ formula, we can replace the posterior probabilities by the prior probabilities
and the conditional densities. This results in the equivalent rule, to decide ω1 if

(λ21 − λ11)p(x|ω1)P (ω1) > (λ12 − λ22)p(x|ω2)P (ω2), (16)

and ω2 otherwise.

Another alternative, which follows at once under the reasonable assumption that
λ21 > λ11, is to decide ω1 if

p(x|ω1)

p(x|ω2)
>

λ12 − λ22

λ21 − λ11

P (ω2)

P (ω1)
. (17)

This form of the decision rule focuses on the x-dependence of the probability densities.
We can consider p(x|ωj) a function of ωj (i.e., the likelihood function), and then form likelihood

ratiothe likelihood ratio p(x|ω1)/p(x|ω2). Thus the Bayes decision rule can be interpreted
as calling for deciding ω1 if the likelihood ratio exceeds a threshold value that is
independent of the observation x.

2.3 Minimum-Error-Rate Classification

In classification problems, each state of nature is usually associated with a different
one of the c classes, and the action αi is usually interpreted as the decision that the
true state of nature is ωi. If action αi is taken and the true state of nature is ωj , then
the decision is correct if i = j, and in error if i �= j. If errors are to be avoided, it is
natural to seek a decision rule that minimizes the probability of error, i.e., the error
rate.

The loss function of interest for this case is hence the so-called symmetrical or
zero-one loss function, zero-one

loss

λ(αi|ωj) =

{
0 i = j
1 i �= j

i, j = 1, ..., c. (18)

This loss function assigns no loss to a correct decision, and assigns a unit loss to any
error; thus, all errors are equally costly.∗ The risk corresponding to this loss function
is precisely the average probability of error, since the conditional risk is

R(αi|x) =

c∑

j=1

λ(αi|ωj)P (ωj |x)

=
∑

j �=i

P (ωj |x)

= 1− P (ωi|x) (19)

∗ We note that other loss functions, such as quadratic and linear-difference, find greater use in
regression tasks, where there is a natural ordering on the predictions and we can meaningfully
penalize predictions that are “more wrong” than others.

and decide ω2 otherwise
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Two-Category Classification

� the preceding rule is equivalent to the following rule:

p(x|ω1)

p(x|ω2)
>

(
λ12 − λ22

λ21 − λ11

)
P (ω2)

P (ω1)

This is called likelihood ratio.

� Optimal decision property:
“If the likelihood ratio exceeds a threshold value independent of the input pattern
x, we can take optimal actions”
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Minimum-Error-Rate Classification

� Classification: actions are decision on classes
� If action αi is taken and the true state of nature is ωj then then decision is correct if
i = j and in error if i 6= j

� Seek a decision rule that minimizes the probability of error which is the error rate.

19/66 Kundan Kumar Pattern Classification



Bayesian Decision Theory Disc. Functions Normal Density Evaluation BDT-Discrete References

Minimum-Error-Rate Classification

� Define the zero-one loss function

λ (αi|ωj) =

{
0 if i = j
1 if i 6= j

i, j = 1, . . . , c

� Conditional risk becomes

R (αi|x) =

c∑

j=1

λ (αi|ωj)P (ωj |x)

=
∑

j 6=i
P (ωj |x)

= 1− P (ωi|x)
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Minimum-Error-Rate Classification

� Minimizing the risk requires maximizing P (ωi|x) and results in the minimum-error
decision rule

Decide ωi if P (ωi|x) > P (ωj |x) ∀ j 6= i.

� The resulting error is called the Bayes error and is the best performance that can be
achieved.
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Minimum-Error-Rate Classification

10 CHAPTER 2. BAYESIAN DECISION THEORY

and P (ωi|x) is the conditional probability that action αi is correct. The Bayes decision
rule to minimize risk calls for selecting the action that minimizes the conditional
risk. Thus, to minimize the average probability of error, we should select the i that
maximizes the posterior probability P (ωi|x). In other words, for minimum error rate:

Decide ωi if P (ωi|x) > P (ωj |x) for all j �= i. (20)

This is the same rule as in Eq. 6.

We saw in Fig. 2.2 some class-conditional probability densities and the posterior
probabilities; Fig. 2.3 shows the likelihood ratio p(x|ω1)/p(x|ω2) for the same case. In
general, this ratio can range between zero and infinity. The threshold value θa marked
is from the same prior probabilities but with zero-one loss function. Notice that this
leads to the same decision boundaries as in Fig. 2.2, as it must. If we penalize mistakes
in classifying ω1 patterns as ω2 more than the converse (i.e., λ21 > λ12), then Eq. 17
leads to the threshold θb marked. Note that the range of x values for which we classify
a pattern as ω1 gets smaller, as it should.

x

θa

p(x|ω
1
)

p(x|ω
2
)

R1
R

1
R

2R2

θb

Figure 2.3: The likelihood ratio p(x|ω1)/p(x|ω2) for the distributions shown in Fig. 2.1.
If we employ a zero-one or classification loss, our decision boundaries are determined
by the threshold θa. If our loss function penalizes miscategorizing ω2 as ω1 patterns
more than the converse, (i.e., λ12 > λ21), we get the larger threshold θb, and hence
R1 becomes smaller.

2.3.1 *Minimax Criterion

Sometimes we must design our classifier to perform well over a range of prior proba-
bilities. For instance, in our fish categorization problem we can imagine that whereas
the physical properties of lightness and width of each type of fish remain constant, the
prior probabilities might vary widely and in an unpredictable way, or alternatively
we want to use the classifier in a different plant where we do not know the prior
probabilities. A reasonable approach is then to design our classifier so that the worst
overall risk for any value of the priors is as small as possible — that is, minimize the
maximum possible overall risk.

Figure: The likelihood ratio p(x|ω1)/p(x|ω2). The threshold θa is computed using the priors P (ω1) = 2/3 and
P (ω2) = 1/3, and a zero-one loss function. If we penalize mistakes in classifying ω2 patterns as ω1 more than
the converse, we should increase the threshold to θb.
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Classifiers, Discriminant Functions, and Decision Surfaces
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Classifiers

� There are many different ways to represent patterns classifiers.

2.4. CLASSIFIERS, DISCRIMINANTS AND DECISION SURFACES 13

2.4 Classifiers, Discriminant Functions and Deci-
sion Surfaces

2.4.1 The Multi-Category Case

There are many different ways to represent pattern classifiers. One of the most useful
is in terms of a set of discriminant functions gi(x), i = 1, ..., c. The classifier is said
to assign a feature vector x to class ωi if

gi(x) > gj(x) for all j �= i. (24)

Thus, the classifier is viewed as a network or machine that computes c discriminant
functions and selects the category corresponding to the largest discriminant. A net-
work representation of a classifier is illustrated in Fig. 2.5.

Discriminant
functions

Input

g1(x) g2(x) gc(x). . .

x1
x2 xd. . .x3

Costs

Action
(e.g., classification)

Figure 2.5: The functional structure of a general statistical pattern classifier which
includes d inputs and c discriminant functions gi(x). A subsequent step determines
which of the discriminant values is the maximum, and categorizes the input pat-
tern accordingly. The arrows show the direction of the flow of information, though
frequently the arrows are omitted when the direction of flow is self-evident.

A Bayes classifier is easily and naturally represented in this way. For the gen-
eral case with risks, we can let gi(x) = −R(αi|x), since the maximum discriminant
function will then correspond to the minimum conditional risk. For the minimum-
error-rate case, we can simplify things further by taking gi(x) = P (ωi|x), so that the
maximum discriminant function corresponds to the maximum posterior probability.

Clearly, the choice of discriminant functions is not unique. We can always multiply
all the discriminant functions by the same positive constant or shift them by the same
additive constant without influencing the decision. More generally, if we replace every
gi(x) by f(gi(x)), where f(·) is a monotonically increasing function, the resulting
classification is unchanged. This observation can lead to significant analytical and
computational simplifications. In particular, for minimum-error-rate classification,
any of the following choices gives identical classification results, but some can be
much simpler to understand or to compute than others:

Figure: The functional structure of a general statistical pattern classifier which includes d inputs and c
discriminant functions gi(x). A subsequent step determines which of the discriminant values is the maximum,
and categorizes the input pattern accordingly.
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Discriminant Functions

� A useful way of representing classifiers is through discriminant functions
gi(x), i = 1, . . . , c, where the classifier assigns a feature vector x to class ωi if

gi(x) > gj(x) ∀ j 6= i.

� For the classifier that minimizes conditional risk

gi(x) = −R(αi|x).

� For the classifier that minimizes error

gi(x) = P (ωi|x).
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Discriminant Functions

� These functions divide the feature space into c decision regions (R1, . . . ,Rc),
separated by decision boundaries.

� Note that the results do not change even if we replace every gi(x) by f(gi(x))
where f(·) is a monotonically increasing function (e.g., logarithm).

� This may lead to significant analytical and computational simplifications.

26/66 Kundan Kumar Pattern Classification



Bayesian Decision Theory Disc. Functions Normal Density Evaluation BDT-Discrete References

For example: Minimum-Error-Rate Classification

14 CHAPTER 2. BAYESIAN DECISION THEORY

gi(x) = P (ωi|x) =
p(x|ωi)P (ωi)
c∑

j=1

p(x|ωj)P (ωj)
(25)

gi(x) = p(x|ωi)P (ωi) (26)

gi(x) = ln p(x|ωi) + ln P (ωi), (27)

where ln denotes natural logarithm.
Even though the discriminant functions can be written in a variety of forms, the

decision rules are equivalent. The effect of any decision rule is to divide the feature
space into c decision regions, R1,...,Rc. If gi(x) > gj(x) for all j �= i, then x is indecision

region Ri, and the decision rule calls for us to assign x to ωi. The regions are separated
by decision boundaries, surfaces in feature space where ties occur among the largest
discriminant functions (Fig. 2.6).
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Figure 2.6: In this two-dimensional two-category classifier, the probability densities
are Gaussian (with 1/e ellipses shown), the decision boundary consists of two hyper-
bolas, and thus the decision region R2 is not simply connected.

2.4.2 The Two-Category Case

While the two-category case is just a special instance of the multicategory case, it has
traditionally received separate treatment. Indeed, a classifier that places a pattern in

Figure: In this two-dimensional two-category
classifier, the probability densities are Gaussian,
the decision boundary consists of two
hyperbolas.
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Decision boundary: Two-Category Case

� The two-category case is just a special instance of the multicategory case.

� Instead of using two discriminant functions g1 and g2 and assigning x to ω1 if
g1 > g2, it is common to define a single discriminant function

g(x) ≡ g1(x)− g2(x)

and Decide ω1 if g(x) > 0; otherwise decide ω2

� Minimum-error-rate discriminant function can be written as

2.5. THE NORMAL DENSITY 15

one of only two categories has a special name — a dichotomizer.∗ Instead of using two dichotomizer
discriminant functions g1 and g2 and assigning x to ω1 if g1 > g2, it is more common
to define a single discriminant function

g(x) ≡ g1(x) − g2(x), (28)

and to use the following decision rule: Decide ω1 if g(x) > 0; otherwise decide ω2.
Thus, a dichotomizer can be viewed as a machine that computes a single discriminant
function g(x), and classifies x according to the algebraic sign of the result. Of the
various forms in which the minimum-error-rate discriminant function can be written,
the following two (derived from Eqs. 25 & 27) are particularly convenient:

g(x) = P (ω1|x) − P (ω2|x) (29)

g(x) = ln
p(x|ω1)

p(x|ω2)
+ ln

P (ω1)

P (ω2)
. (30)

2.5 The Normal Density

The structure of a Bayes classifier is determined by the conditional densities p(x|ωi)
as well as by the prior probabilities. Of the various density functions that have
been investigated, none has received more attention than the multivariate normal or
Gaussian density. To a large extent this attention is due to its analytical tractability.
However the multivariate normal density is also an appropriate model for an important
situation, viz., the case where the feature vectors x for a given class ωi are continuous
valued, randomly corrupted versions of a single typical or prototype vector µi. In this
section we provide a brief exposition of the multivariate normal density, focusing on
the properties of greatest interest for classification problems.

First, recall the definition of the expected value of a scalar function f(x), defined expectation
for some density p(x):

E [f(x)] ≡
∞∫

−∞

f(x)p(x)dx. (31)

If we have samples in a set D from a discrete distribution, we must sum over all
samples as

E [f(x)] =
∑

x∈D
f(x)P (x), (32)

where P (x) is the probability mass at x. We shall often have call to calculate expected
values — by these and analogous equations defined in higher dimensions (see Appendix
Secs. ??, ?? & ??).∗

∗ A classifier for more than two categories is called a polychotomizer.
∗ We will often use somewhat loose engineering terminology and refer to a single point as a “sample.”

Statisticians, though, always refer to a sample as a collection of points, and discuss “a sample of
size n.” When taken in context, there are rarely ambiguities in such usage.
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Normal/Gaussian Density
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The Normal/Gaussian Density

� Univariate density, N(µ, σ2)
� Density which is analytically tractable
� Continuous density
� A lot of processes are asymptotically Gaussian
� Handwritten characters, speech sounds are ideal or prototype corrupted by random

process (central limit theorem)
� For x ∈ R:

p(x) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]

where µ = mean (or expected value) of x
= E[x] =

∫
xp(x)dx

σ2 = expected squared deviation or variance
= E[(x− µ)(x− µ)t] =

∫
(x− µ)(x− µ)tp(x)dx
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Univariate density

16 CHAPTER 2. BAYESIAN DECISION THEORY

2.5.1 Univariate Density

We begin with the continuous univariate normal or Gaussian density,

p(x) =
1√
2πσ

exp

[
−1

2

(
x− µ

σ

)2
]
, (33)

for which the expected value of x (an average, here taken over the feature space) is

µ ≡ E [x] =

∞∫

−∞

xp(x) dx, (34)

and where the expected squared deviation or variance isvariance

σ2 ≡ E [(x− µ)2] =

∞∫

−∞

(x− µ)2p(x) dx. (35)

The univariate normal density is completely specified by two parameters: its mean
µ and variance σ2. For simplicity, we often abbreviate Eq. 33 by writing p(x) ∼mean
N(µ, σ2) to say that x is distributed normally with mean µ and variance σ2. Samples
from normal distributions tend to cluster about the mean, with a spread related to
the standard deviation σ (Fig. 2.7).

x

2.5% 2.5%

σ

p(x)

µ + σ µ + 2σµ − σµ − 2σ µ

Figure 2.7: A univariate normal distribution has roughly 95% of its area in the range
|x− µ| ≤ 2σ, as shown. The peak of the distribution has value p(µ) = 1/

√
2πσ.

There is a deep relationship between the normal distribution and entropy. Weentropy
shall consider entropy in greater detail in Chap. ??, but for now we merely state that
the entropy of a distribution is given by

H(p(x)) = −
∫

p(x) ln p(x) dx, (36)

and measured in nats. If a log2 is used instead, the unit is the bit. The entropy is a non-nat

bit
negative quantity that describes the fundamental uncertainty in the values of points

Figure: A univariate normal distribution has roughly 95% of its area in the range |x− µ| ≤ 2σ. The peak of the
distribution has value p(µ) = 1/

√
2πσ
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Multivariate Density

� Multivariate normal density, N(µ,Σ), in d-dimensions (i.e., for x ∈ Rd) is

p(x) =
1

(2π)d/2|Σ|1/2 exp

[
−1

2
(x− µ)tΣ−1(x− µ)

]

where:
x = (x1, x2, . . . , xd)

T d-dimensional vector
µ = (µ1, µ2, . . . , µd)

T mean vector
= E[x] =

∫
xp(x)dx

Σ = d× d covariance matrix
= E[(x− µ)(x− µ)t] =

∫
(x− µ)(x− µ)tp(x)dx

|Σ| and Σ−1 are determinant and inverse respectively
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Multivariate Density
20 CHAPTER 2. BAYESIAN DECISION THEORY

x2

x1

µ

Figure 2.9: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on
the mean µ. The red ellipses show lines of equal probability density of the Gaussian.

being merely σ2 times the identity matrix I. Geometrically, this corresponds to the
situation in which the samples fall in equal-size hyperspherical clusters, the cluster
for the ith class being centered about the mean vector µi. The computation of the
determinant and the inverse of Σi is particularly easy: |Σi| = σ2d and Σ−1

i = (1/σ2)I.
Since both |Σi| and the (d/2) ln 2π term in Eq. 47 are independent of i, they are
unimportant additive constants that can be ignored. Thus we obtain the simple
discriminant functions

gi(x) = −‖x − µi‖2

2σ2
+ ln P (ωi), (48)

where ‖ · ‖ is the Euclidean norm, that is,Euclidean
norm

‖x − µi‖2 = (x − µi)
t(x − µi). (49)

If the prior probabilities are not equal, then Eq. 48 shows that the squared distance
‖x−µ‖2 must be normalized by the variance σ2 and offset by adding ln P (ωi); thus,
if x is equally near two different mean vectors, the optimal decision will favor the a
priori more likely category.

Regardless of whether the prior probabilities are equal or not, it is not actually
necessary to compute distances. Expansion of the quadratic form (x − µi)

t(x − µi)
yields

gi(x) = − 1

2σ2
[xtx − 2µt

ix + µt
iµi] + ln P (ωi), (50)

which appears to be a quadratic function of x. However, the quadratic term xtx is
the same for all i, making it an ignorable additive constant. Thus, we obtain the
equivalent linear discriminant functionslinear

discriminant

gi(x) = wt
ix + wi0, (51)

where

Figure: Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean µ. The loci of
points of constant density are the ellipses for which (x− µ)tΣ−1(x− µ) is constant, where the eigenvectors of
Σ determine the direction and the corresponding eigenvalues determine the length of the principal axes. The
quantity r2 = (x− µ)tΣ−1(x− µ) is called the squared Mahalanobis distance from x to µ
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Discriminant Functions for the Normal Density

� Discriminant functions for minimum-error-rate classification can be written as

gi(x) = ln p(x|ωi) + ln P(ωi)

� For p(x|ωi) = N(µi,Σi) (case of multivariate normal)

gi(x) = −1

2
(x− µi)TΣ−1

i (x− µi)−
d

2
ln 2π − 1

2
ln |Σi|+ lnP (ωi)
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Case 1: Σi = σ2I

� Discriminant functions are

gi(x) = wT
i x + wi0 linear discriminant

where

wi =
1

σ2
µi

wi0 = − 1

2σ2
µTi µi + lnP (wi)

(wi0 is the threshold or bias for the ith category)
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Case 1: Σi = σ2I

� Decision boundaries are the hyperplanes gi(x) = gj(x), and can be written as

wT (x− x0)

where

w =µi − µj

x0 =
1

2
(µi + µj)−

σ2

||µi − µj ||2
ln
P (wi)

P (wj)
(µi − µj).

� Hyperplane separating Ri and Rj passes through the point x0 and is orthogonal to
the vector w.
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Case 1: Σi = σ2I

� If the covariances of two distributions are equal and proportional to the identity
matrix, then the distributions are spherical in d dimensions, and the boundary is a
generalized hyperplane of (d− 1) dimensions, perpendicular to the line separating
the means.
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Figure: If the covariances of two distributions are equal and proportional to the
identity matrix, then the distributions are spherical in d dimensions, and the boundary
is a generalized hyperplane of d− 1 dimensions, perpendicular to the line separating
the means. In these 1-, 2-, and 3-dimensional examples, we indicate p(x|ωi) and the
boundaries for the case P (ω1) = P (ω2). In the 3-dimensional case, the grid plane
separates R1 from R2.

wi =
1

σ2
µi (52)

and

wi0 =
−1

2σ2
µt
iµi + ln P (ωi). (53)

We call wi0 the threshold or bias in the ith direction. threshold

bias
A classifier that uses linear discriminant functions is called a linear machine. This

linear
machine

kind of classifier has many interesting theoretical properties, some of which will be
discussed in detail in Chap. ??. At this point we merely note that the decision
surfaces for a linear machine are pieces of hyperplanes defined by the linear equations
gi(x) = gj(x) for the two categories with the highest posterior probabilities. For our
particular case, this equation can be written as

wt(x− x0) = 0, (54)

where

w = µi − µj (55)

and

x0 =
1

2
(µi + µj)−

σ2

‖µi − µj‖2
ln

P (ωi)

P (ωj)
(µi − µj). (56)

This equation defines a hyperplane through the point x0 and orthogonal to the
vector w. Since w = µi − µj , the hyperplane separating Ri and Rj is orthogonal to
the line linking the means. If P (ωi) = P (ωj), the second term on the right of Eq. 56
vanishes, and thus the point x0 is halfway between the means, and the hyperplane is
the perpendicular bisector of the line between the means (Fig. 2.11). If P (ωi) �= P (ωj),
the point x0 shifts away from the more likely mean. Note, however, that if the variance

Figure: In these 1-, 2-, and 3-dimensional examples, we indicate p(x|wi) and the boundaries for the case
P (w1) = P (w2). In this 3-dimensional case, the grid plane separates R1 from R2.
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Case 1: Σi = σ2I
22 CHAPTER 2. BAYESIAN DECISION THEORY
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Figure 2.11: As the priors are changed, the decision boundary shifts; for sufficiently
disparate priors the boundary will not lie between the means of these 1-, 2- and
3-dimensional spherical Gaussian distributions.

σ2 is small relative to the squared distance ‖µi − µj‖, then the position of the decision
boundary is relatively insensitive to the exact values of the prior probabilities.

If the prior probabilities P (ωi) are the same for all c classes, then the ln P (ωi)
term becomes another unimportant additive constant that can be ignored. When this
happens, the optimum decision rule can be stated very simply: to classify a feature
vector x, measure the Euclidean distance ‖x − µi‖ from each x to each of the c
mean vectors, and assign x to the category of the nearest mean. Such a classifier is
called a minimum distance classifier. If each mean vector is thought of as being anminimum

distance
classifier

ideal prototype or template for patterns in its class, then this is essentially a template-
matching procedure (Fig. 2.10), a technique we will consider again in Chap. ?? Sect. ??

template-
matching

on the nearest-neighbor algorithm.
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Case 1: Σi = σ2I

22 CHAPTER 2. BAYESIAN DECISION THEORY
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Figure: As the priors are changed, the decision boundary shifts; for suffciently
disparate priors the boundary will not lie between the means of these 1-, 2- and
3-dimensional spherical Gaussian distributions.

σ2 is small relative to the squared distance ‖µi − µj‖, then the position of the decision
boundary is relatively insensitive to the exact values of the prior probabilities.

If the prior probabilities P (ωi) are the same for all c classes, then the ln P (ωi)
term becomes another unimportant additive constant that can be ignored. When this
happens, the optimum decision rule can be stated very simply: to classify a feature
vector x, measure the Euclidean distance ‖x − µi‖ from each x to each of the c
mean vectors, and assign x to the category of the nearest mean. Such a classifier is
called a minimum distance classifier. If each mean vector is thought of as being anminimum

distance
classifier

ideal prototype or template for patterns in its class, then this is essentially a template-
matching procedure (Fig. 2.10), a technique we will consider again in Chap. ?? Sect. ??

template-
matching

on the nearest-neighbor algorithm.

Figure: A the priors are changed, the decision boundary shifts; for sufficiently disparate priors the boundary will
not lie between the means of these 1-, 2-, and 3-dimensional spherical Gaussian distributions.
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Case 1: Σi = σ2I

� Special case when P (wi) are the same for i = 1, . . . , c is the minimum-distance
classifier that uses the decision rule

assign x to wi∗ where i∗ = arg min
i=1,...,c

||x− µi||
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Case 2: Σi = Σ

� Discriminant functions are

g(x) = wT
i x + wi0 (linear discriminant)

where

wi =Σ−1µi

wi0 =− 1

2
µTi Σ−1µi + lnP (wi).
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Case 2: Σi = Σ

� Decision boundaries can be written as

wT (x− x0) = 0

w =Σ−1(µi − µj)

x0 =
1

2
(µi + µj)−

ln(P (wi)/P (wj))

(µi − µj)TΣ−1(µi − µj)
(µi − µj).

� Hyperplane passes through x0 but is not necessarily orthogonal to the line between
the means.
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Case 2: Σi = Σ

24 CHAPTER 2. BAYESIAN DECISION THEORY
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Figure 2.12: Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmetric
Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means.
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Case 2: Σi = Σ

24 CHAPTER 2. BAYESIAN DECISION THEORY
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Figure: Probability densities (indicated by the surfaces in two dimensions and
ellipsoidal surfaces in three dimensions) and decision regions for equal but asymmetric
Gaussian distributions. The decision hyperplanes need not be perpendicular to the
line connecting the means.

Figure: Probability densities (indicated by the surfaces in two dimensions and ellipsoidal surfaces in three
dimensions) and decision regions for equal but asymmetric Gaussian distributions. The decision hyperplanes need
not be perpendicular to the line connecting the means.
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Case 3: Σi =arbitrary

� Discriminant functions are

gi(x) = xTWix + wT
i x + wi0 (quadratic discriminant)

where

Wi =− 1

2
Σ−1
i

wi =Σ−1
i µi

wi0 =− 1

2
µTi Σ−1

i µi −
1

2
ln |Σi|+ lnP (wi)

� Decision boundaries are hyperquadrics.
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Case 3: Σi =arbitrary

26 CHAPTER 2. BAYESIAN DECISION THEORY
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Figure 2.14: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.
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Case 3: Σi =arbitrary
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Figure: Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadratic, one can find two
Gaussian distributions whose Bayes decision boundary is that hyperquadric.

Figure: Arbitrary Gaussian distributions lead to Bayes decision boundaries that are general hyperquadrics.
Conversely, given any hyperquadratic, one can find two Gaussian distributions whose Bayes decision boundary is
that hyperquadric.
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Example to solve

Question:
For a 2-class problem, the prior probabilities are: P (w1) = 1/4 and P (w2) = 3/4. The
class conditional distribution for x = x, that is x has only a single attribute, are
p(x/w1) = N(0, 1) and p(x/w2) = N(1, 1).

(a) Calculate the threshold boundary value xt which gives the probability of minimum
error.

(b) If the loss matrix is

λij =

[
0 1

1/2 0

]
,

find the threshold boundary value xt for minimum risk.
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Example to solve

Question:
Two normal distribution are characterized by: P (w1) = P (w2) = 0.5 and

µ1 =

(
0
1

)
, µ2 =

(
0
−1

)

Sketch the Bayes decision boundary for Σ1 = Σ2 = I.
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Example to solve

Question:
Find the decision boundary between ω1 and ω2 where

ω1 : (
2
6

)
,

(
3
4

)
,

(
3
8

)
,

(
4
6

)
ω2 : (

3
0

)
,

(
1
−2

)
,

(
3
−4

)
,

(
5
−2

)
& P (ω1) = P (ω2) = 0.5

2.6. DISCRIMINANT FUNCTIONS FOR THE NORMAL DENSITY 29

Example 1: Decision regions for two-dimensional Gaussian data

To clarify these ideas, we explicitly calculate the decision boundary for the two-
category two-dimensional data in the Example figure. Let ω1 be the set of the four
black points, and ω2 the red points. Although we will spend much of the next chapter
understanding how to estimate the parameters of our distributions, for now we simply
assume that we need merely calculate the means and covariances by the discrete
versions of Eqs. 39 & 40; they are found to be:

µ1 =

[
3
6

]
; Σ1 =

(
1/2 0
0 2

)
and µ2 =

[
3
−2

]
; Σ2 =

(
2 0
0 2

)
.

The inverse matrices are then,

Σ−1
1 =

(
2 0
0 1/2

)
and Σ−1

2 =

(
1/2 0
0 1/2

)
.

We assume equal prior probabilities, P (ω1) = P (ω2) = 0.5, and substitute these into
the general form for a discriminant, Eqs. 64 – 67, setting g1(x) = g2(x) to obtain the
decision boundary:

x2 = 3.514 − 1.125x1 + 0.1875x2
1.

This equation describes a parabola with vertex at
(

3
1.83

)
. Note that despite the

fact that the variance in the data along the x2 direction for both distributions is the
same, the decision boundary does not pass through the point

(
3
2

)
, midway between

the means, as we might have naively guessed. This is because for the ω1 distribution,
the probability distribution is “squeezed” in the x1-direction more so than for the ω2

distribution. Because the overall prior probabilities are the same (i.e., the integral over
space of the probability density), the distribution is increased along the x2 direction
(relative to that for the ω2 distribution). Thus the decision boundary lies slightly
lower than the point midway between the two means, as can be seen in the decision
boundary.

x1

x2

µ2

µ1

-2 2 4 6 8 10

-2.5

2.5

5

7.5

10

The computed Bayes decision boundary for two Gaussian distributions, each based
on four data points.

Assuming that samples in ω1 and ω2 following Normal distribution. Solution:
1.5x2

1 − 9x1 − 8x2 + 28.1137 = 0
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Evaluate Classifiers
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Confusion Matrix

� For a two class-problem, a table of confusion (sometimes also called a confusion
matrix), is a table with two rows and two columns that reports the number of
� false positives (FP),
� false negatives (FN),
� true positives (TP), and
� true negatives(TN)

� In statistical classification, a confusion matrix, also known as an error matrix.
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Performance Evaluation using confusion matrix

� True positive rate (TPR), also called Sensitivity

� False positive rate (FPR), also called Fall-out

� False negative rate (FNR), also called Miss rate

� True negative rate (TNR), also called Specificity
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Receiver Operating Characteristics

� If we use a parameter (e.g.,
a threshold) in our
decision, the plot of TPR
vs FPR for different values
of the parameter is called
the receiver operating
characteristic (ROC) curve.

� The ROC curve is created
by plotting the true
positive rate (TPR) against
the false positive rate
(FPR) at various threshold
settings.
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Receiver operating characteristic (ROC)

ROC curve

random guessing

Figure: Example receiver operating
characteristic (ROC) curves for different
setting of the system

54/66 Kundan Kumar Pattern Classification



Bayesian Decision Theory Disc. Functions Normal Density Evaluation BDT-Discrete References

Receiver Operating Characteristics
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Summary

� To minimize the overall risk, choose the action that minimizes the conditional risk
R(α|x).

� To minimize the probability of error, choose the class that maximizes the posterior
probability P (ωj |x).

� If there are different penalties for misclassifying patterns from different classes, the
posteriors must be weighted according to such penalties before taking action.

� Do not forget that these decisions are the optimal ones under the assumption that
the “true” values of the probabilities are known.
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Bayes Decision Theory - Discrete Features
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Bayes Decision Theory - Discrete Features

� Components of x are binary or integer valued, x can take only one of m discrete
values v1, v2, . . . , vm

� Case of independent binary features in 2 category problem
Let x = [x1, x2, . . . , xd]

t where each xi is either 0 or 1, with probabilities:
pi = P (xi = 1|ω1)
qi = P (xi = 1|ω2)

pi > qi ⇒ xi is more likely to have value 1 if x ∈ ω1

� Class conditional probabilities

p(x|ω1) =

d∏

i=1

pxii (1− pi)1−xi p(x|ω2) =

d∏

i=1

qxii (1− qi)1−xi
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Bayes Decision Theory - Discrete Features

� Then the likelihood ratio is given by

p(x|ω1)

p(x|ω2)
=

d∏

i=1

(
pi
qi

)xi(1− pi
1− qi

)1−xi

� we know that

2.5. THE NORMAL DENSITY 15

one of only two categories has a special name — a dichotomizer.∗ Instead of using two dichotomizer
discriminant functions g1 and g2 and assigning x to ω1 if g1 > g2, it is more common
to define a single discriminant function

g(x) ≡ g1(x) − g2(x), (28)

and to use the following decision rule: Decide ω1 if g(x) > 0; otherwise decide ω2.
Thus, a dichotomizer can be viewed as a machine that computes a single discriminant
function g(x), and classifies x according to the algebraic sign of the result. Of the
various forms in which the minimum-error-rate discriminant function can be written,
the following two (derived from Eqs. 25 & 27) are particularly convenient:

g(x) = P (ω1|x) − P (ω2|x) (29)

g(x) = ln
p(x|ω1)

p(x|ω2)
+ ln

P (ω1)

P (ω2)
. (30)

2.5 The Normal Density

The structure of a Bayes classifier is determined by the conditional densities p(x|ωi)
as well as by the prior probabilities. Of the various density functions that have
been investigated, none has received more attention than the multivariate normal or
Gaussian density. To a large extent this attention is due to its analytical tractability.
However the multivariate normal density is also an appropriate model for an important
situation, viz., the case where the feature vectors x for a given class ωi are continuous
valued, randomly corrupted versions of a single typical or prototype vector µi. In this
section we provide a brief exposition of the multivariate normal density, focusing on
the properties of greatest interest for classification problems.

First, recall the definition of the expected value of a scalar function f(x), defined expectation
for some density p(x):

E [f(x)] ≡
∞∫

−∞

f(x)p(x)dx. (31)

If we have samples in a set D from a discrete distribution, we must sum over all
samples as

E [f(x)] =
∑

x∈D
f(x)P (x), (32)

where P (x) is the probability mass at x. We shall often have call to calculate expected
values — by these and analogous equations defined in higher dimensions (see Appendix
Secs. ??, ?? & ??).∗

∗ A classifier for more than two categories is called a polychotomizer.
∗ We will often use somewhat loose engineering terminology and refer to a single point as a “sample.”

Statisticians, though, always refer to a sample as a collection of points, and discuss “a sample of
size n.” When taken in context, there are rarely ambiguities in such usage.

� Therefore discriminant function will be

2.9. BAYES DECISION THEORY — DISCRETE FEATURES 37

This is a model of a classification problem in which each feature gives us a yes/no
answer about the pattern. If pi > qi, we expect the ith feature to give a “yes” answer
more frequently when the state of nature is ω1 than when when it is ω2. (As an
example, consider two factories each making the same automobile, each of whose d
components could be functional or defective. If it was known how the factories differed
in their reliabilities for making each component, then this model could be used to judge
which factory manufactured a given automobile based on the knowledge of which
features are functional and which defective.) By assuming conditional independence
we can write P (x|ωi) as the product of the probabilities for the components of x.
Given this assumption, a particularly convenient way of writing the class-conditional
probabilities is as follows:

P (x|ω1) =

d∏

i=1

pxi
i (1 − pi)

1−xi (84)

and

P (x|ω2) =

d∏

i=1

qxi
i (1 − qi)

1−xi . (85)

Then the likelihood ratio is given by

P (x|ω1)

P (x|ω2)
=

d∏

i=1

(pi
qi

)xi
(1 − pi

1 − qi

)1−xi

(86)

and consequently Eq. 30 yields the discriminant function

g(x) =

d∑

i=1

[
xi ln

pi
qi

+ (1 − xi) ln
1 − pi
1 − qi

]
+ ln

P (ω1)

P (ω2)
. (87)

We note especially that this discriminant function is linear in the xi and thus we can
write

g(x) =

d∑

i=1

wixi + w0, (88)

where

wi = ln
pi(1 − qi)

qi(1 − pi)
i = 1, ..., d (89)

and

w0 =

d∑

i=1

ln
1 − pi
1 − qi

+ ln
P (ω1)

P (ω2)
. (90)

Let us examine these results to see what insight they can give. Recall first that
we decide ω1 if g(x) > 0 and ω2 if g(x) ≤ 0. We have seen that g(x) is a weighted
combination of the components of x. The magnitude of the weight wi indicates the
relevance of a “yes” answer for xi in determining the classification. If pi = qi, xi gives
us no information about the state of nature, and wi = 0, just as we might expect.
If pi > qi, then 1 − pi < 1 − qi and wi is positive. Thus in this case a “yes” answer
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Bayes Decision Theory - Discrete Features

� We note especially that this discrimant function is linear in the xi and thus we can
write

2.9. BAYES DECISION THEORY — DISCRETE FEATURES 37

This is a model of a classification problem in which each feature gives us a yes/no
answer about the pattern. If pi > qi, we expect the ith feature to give a “yes” answer
more frequently when the state of nature is ω1 than when when it is ω2. (As an
example, consider two factories each making the same automobile, each of whose d
components could be functional or defective. If it was known how the factories differed
in their reliabilities for making each component, then this model could be used to judge
which factory manufactured a given automobile based on the knowledge of which
features are functional and which defective.) By assuming conditional independence
we can write P (x|ωi) as the product of the probabilities for the components of x.
Given this assumption, a particularly convenient way of writing the class-conditional
probabilities is as follows:

P (x|ω1) =

d∏

i=1

pxi
i (1− pi)

1−xi (84)

and

P (x|ω2) =
d∏

i=1

qxi
i (1− qi)

1−xi . (85)

Then the likelihood ratio is given by

P (x|ω1)

P (x|ω2)
=

d∏

i=1

(pi
qi

)xi
(1− pi

1− qi

)1−xi

(86)

and consequently Eq. 30 yields the discriminant function

g(x) =
d∑

i=1

[
xi ln

pi
qi

+ (1− xi) ln
1− pi
1− qi

]
+ ln

P (ω1)

P (ω2)
. (87)

We note especially that this discriminant function is linear in the xi and thus we can
write

g(x) =
d∑

i=1

wixi + w0, (88)

where

wi = ln
pi(1− qi)

qi(1− pi)
i = 1, ..., d (89)

and

w0 =
d∑

i=1

ln
1− pi
1− qi

+ ln
P (ω1)

P (ω2)
. (90)

Let us examine these results to see what insight they can give. Recall first that
we decide ω1 if g(x) > 0 and ω2 if g(x) ≤ 0. We have seen that g(x) is a weighted
combination of the components of x. The magnitude of the weight wi indicates the
relevance of a “yes” answer for xi in determining the classification. If pi = qi, xi gives
us no information about the state of nature, and wi = 0, just as we might expect.
If pi > qi, then 1 − pi < 1 − qi and wi is positive. Thus in this case a “yes” answer

� Decide ω1 if g(x) > 0 and ω2 if g(x) ≤ 0

60/66 Kundan Kumar Pattern Classification



Bayesian Decision Theory Disc. Functions Normal Density Evaluation BDT-Discrete References

Bayes Decision Theory - Discrete Features

� If pi = qi, xi gives us no information about the state of nature, and ω0.

� If pi > qi, then 1− pi < 1− qi and wi is positive. Thus in this case a “yes” answer
for xi contribute wi votes for ω1.

� Furthermore, for any fixed qi < 1, wi gets larger as pi gets larger.

� On the other hand, if pi < qi, wi is negative and a “yes” answer contributes |wi|
votes for ω2.
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Example to solve

Question:
Compute Bayesian decision for three-dimensional binary features
Suppose two categories consist of independent binary features in three dimensions with
known feature probabilities. Let us construct the Bayesian decision boundary if
P (ω1) = P (ω2) = 0.5 and the individual components obey:

{
pi = 0.8
qi = 0.5

i = 1, 2, 3
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Example to solve

Question:
Compute Bayesian decision for three-dimensional binary features
Suppose two categories consist of independent binary features in three dimensions with
known feature probabilities. Let us construct the Bayesian decision boundary if
P (ω1) = P (ω2) = 0.5 and the individual components obey:

{
p1 = p2 = 0.8, p3 = 0.5
q1 = q2 = q3 = 0.5
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Addition Examples:

Question:

2.11. PROBLEMS 47

(b) True of false: In a two-category two-dimensional problem with continuous fea-
ture x, monotonic transformations of both x1 and x2 leave the Bayes error rate
unchanged.

11. Suppose that we replace the deterministic decision function α(x) with a ran-
domized rule, viz., the probability P (αi|x) of taking action αi upon observing x.

(a) Show that the resulting risk is given by

R =

∫ [ a∑

i=1

R(αi|x)P (αi|x)
]
p(x) dx.

(b) In addition, show that R is minimized by choosing P (αi|x) = 1 for the action
αi associated with the minimum conditional risk R(αi|x), thereby showing that
no benefit can be gained from randomizing the best decision rule.

(c) Can we benefit from randomizing a suboptimal rule? Explain.

12. Let ωmax(x) be the state of nature for which P (ωmax|x) ≥ P (ωi|x) for all i,
i = 1, ..., c.

(a) Show that P (ωmax|x) ≥ 1/c.

(b) Show that for the minimum-error-rate decision rule the average probability of
error is given by

P (error) = 1 −
∫

P (ωmax|x)p(x) dx.

(c) Use these two results to show that P (error) ≤ (c− 1)/c.

(d) Describe a situation for which P (error) = (c− 1)/c.

13. In many pattern classification problems one has the option either to assign the
pattern to one of c classes, or to reject it as being unrecognizable. If the cost for
rejects is not too high, rejection may be a desirable action. Let

λ(αi|ωj) =





0 i = j i, j = 1, ..., c
λr i = c + 1
λs otherwise,

where λr is the loss incurred for choosing the (c+1)th action, rejection, and λs is the
loss incurred for making a substitution error. Show that the minimum risk is obtained
if we decide ωi if P (ωi|x) ≥ P (ωj |x) for all j and if P (ωi|x) ≥ 1 − λr/λs, and reject
otherwise. What happens if λr = 0? What happens if λr > λs?
14. Consider the classification problem with rejection option.

(a) Use the results of Problem 13 to show that the following discriminant functions
are optimal for such problems:

gi(x) =





p(x|ωi)P (ωi) i = 1, ..., c

λs−λr

λs

c∑
j=1

p(x|ωj)P (ωj) i = c + 1.

Question:

What is the inverse of

[
4 4
1 2

]
?
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