
Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Pattern Classification
EET3053

Lecture 02: Feature Extraction

Dr. Kundan Kumar
Associate Professor
Department of ECE

Faculty of Engineering (ITER)
S‘O’A Deemed to be University, Bhubaneswar, India-751030

c© 2021 Kundan Kumar, All Rights Reserved

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Feature Extraction

1/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Topics to be covered

� Boundary Representation
� Boundary (Border) following
� Chain codes
� Polynomial Approximation
� Signatures
� Boundary Segments
� Skeletons

� Boundary Descriptors
� Some Simple Descriptors
� Shape Numbers
� Fourier Descriptors
� Statistical Moments

� Regional Descriptors
� Texture: Moment Invariants
� Texture: GLCM, LBP

2/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Good features and Bad features

� Extract features which are good for classification.
� Good features:

� Objects from the same class have similar feature values
� Objects from different classes have different values.

� Bad Features: features simply do not contain the information needed to separate
the classes, doesn’t matter how much effort you put into designing the classifier.

Speech
Capture

Feature
Extraction

Training

Models

Pattern
Matching

Process
Results Text

x x
x x
x x

x x
x

"Good" features

x

x

x

x
x x

x
x

x

"Bad" features

x
x

3/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Feature separability

x x
x x
x x

x x
x

"Good" features

x

x

x

x
x x

x
x

x

"Bad" features

x
x

x x
x x
x x

x x
x

Linear
separability

Non-linear
separability

x
x

x
xx

x
x x
x

x x

x x

x x

Multi-modal

x
x x

x x
x

x

x
x
xx

x

Highly
correlated

xx

4/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Labeled features

f1
f2
f3

 ∈ ω1

f4
f5
f6
f7

 ∈ ω2

� In general, we use labeled features for supervised learning.

� The mapping from pattern to features that is unique whereas mapping from feature
vector to pattern is not immediate.

� So, many patterns may be matched to the same feature of vector.

� In pattern recognition, we never talk about a single pattern. We always talk about
feature vector.

5/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Nature of separating plane?

� For 2 dimensional feature space – line

� For 3 dimensional feature space – plane

� For more than 3 dimensional feature space – hyperplane

6/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary Representation

Memorially: This is the testingpage .

#

FAXIII. ''iln
. L l

7/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Binary Images

Figure: Binary Images
8/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary (Border) algorithm

� Assume a binary image in which object and background points are labeled 1 and 0,
respectively.

� Assume images are padded with the border of 0’s to avoid object merging with the
image border

796 Chapter 11 ■ Representation and Description

†As you will see later in this chapter, the uppermost, leftmost point in a boundary has the important
property that a polygonal approximation to the boundary has a convex vertex at that location.Also, the
left and north neighbors of the point are guaranteed to be background points. These properties make it
a good “standard” point at which to start boundary-following algorithms.

11.1 Representation

The segmentation techniques discussed in Chapter 10 yield raw data in the
form of pixels along a boundary or pixels contained in a region. It is stan-
dard practice to use schemes that compact the segmented data into repre-
sentations that facilitate the computation of descriptors. In this section, we
discuss various representation approaches.

11.1.1 Boundary (Border) Following
Several of the algorithms discussed in this chapter require that the points in
the boundary of a region be ordered in a clockwise (or counterclockwise) di-
rection. Consequently, we begin our discussion by introducing a boundary-
following algorithm whose output is an ordered sequence of points.We assume
(1) that we are working with binary images in which object and background
points are labeled 1 and 0, respectively, and (2) that images are padded with a
border of 0s to eliminate the possibility of an object merging with the image
border. For convenience, we limit the discussion to single regions.The approach is
extended to multiple, disjoint regions by processing the regions individually.

Given a binary region or its boundary, an algorithm for following the bor-
der of or the given boundary, consists of the following steps:

1. Let the starting point, be the uppermost, leftmost point† in the image
that is labeled 1. Denote by the west neighbor of [see Fig. 11.1(b)].
Clearly, always is a background point. Examine the 8-neighbors of

starting at and proceeding in a clockwise direction. Let denote
the first neighbor encountered whose value is 1, and let be the (back-
ground) point immediately preceding in the sequence. Store the loca-
tions of and for use in Step 5.

2. Let and [see Fig. 11.1(c)].
3. Let the 8-neighbors of starting at and proceeding in a clockwise direc-

tion, be denoted by Find the first labeled 1.nkn1, n2, Á , n8.
cb,

c = c1b = b1

b1b0

b1

c1

b1c0b0,
c0

b0c0

b0,

R,
R

You will find it helpful to
review Sections 2.5.2 and
9.5.3 before proceeding.

1 1
1
1
1
1

1 1
1
1
1
1111

1
1

1
1 1

1
1
1
1111

1
1

1
1 1

1
1
1
11111

1
1

1
1c0 b01

1
1

1
1 1 1

c c
b b

FIGURE 11.1 Illustration of the first few steps in the boundary-following algorithm.The
point to be processed next is labeled in black, the points yet to be processed are gray,
and the points found by the algorithm are labeled as gray squares.

a b c d e

796 Chapter 11 ■ Representation and Description

†As you will see later in this chapter, the uppermost, leftmost point in a boundary has the important
property that a polygonal approximation to the boundary has a convex vertex at that location.Also, the
left and north neighbors of the point are guaranteed to be background points. These properties make it
a good “standard” point at which to start boundary-following algorithms.

11.1 Representation

The segmentation techniques discussed in Chapter 10 yield raw data in the
form of pixels along a boundary or pixels contained in a region. It is stan-
dard practice to use schemes that compact the segmented data into repre-
sentations that facilitate the computation of descriptors. In this section, we
discuss various representation approaches.

11.1.1 Boundary (Border) Following
Several of the algorithms discussed in this chapter require that the points in
the boundary of a region be ordered in a clockwise (or counterclockwise) di-
rection. Consequently, we begin our discussion by introducing a boundary-
following algorithm whose output is an ordered sequence of points.We assume
(1) that we are working with binary images in which object and background
points are labeled 1 and 0, respectively, and (2) that images are padded with a
border of 0s to eliminate the possibility of an object merging with the image
border. For convenience, we limit the discussion to single regions.The approach is
extended to multiple, disjoint regions by processing the regions individually.

Given a binary region or its boundary, an algorithm for following the bor-
der of or the given boundary, consists of the following steps:

1. Let the starting point, be the uppermost, leftmost point† in the image
that is labeled 1. Denote by the west neighbor of [see Fig. 11.1(b)].
Clearly, always is a background point. Examine the 8-neighbors of

starting at and proceeding in a clockwise direction. Let denote
the first neighbor encountered whose value is 1, and let be the (back-
ground) point immediately preceding in the sequence. Store the loca-
tions of and for use in Step 5.

2. Let and [see Fig. 11.1(c)].
3. Let the 8-neighbors of starting at and proceeding in a clockwise direc-

tion, be denoted by Find the first labeled 1.nkn1, n2, Á , n8.
cb,

c = c1b = b1

b1b0

b1

c1

b1c0b0,
c0

b0c0

b0,

R,
R

You will find it helpful to
review Sections 2.5.2 and
9.5.3 before proceeding.

1 1
1
1
1
1

1 1
1
1
1
1111

1
1

1
1 1

1
1
1
1111

1
1

1
1 1

1
1
1
11111

1
1

1
1c0 b01

1
1

1
1 1 1

c c
b b

FIGURE 11.1 Illustration of the first few steps in the boundary-following algorithm.The
point to be processed next is labeled in black, the points yet to be processed are gray,
and the points found by the algorithm are labeled as gray squares.

a b c d e
Figure: Illustration of the first few steps in the boundary-following algorithm

9/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary algorithm (Moore boundary tracking algorithm)

1. Let the starting point, b0 be the uppermost, leftmost point in the image that is labeled 1. Denote
by c0 the west neighbor of b0. Clearly, c0 always is a background point. Examine the 8-neighbors
of b0, starting at c0 and proceeding in a clockwise direction. Let b1 denote the first neighbor
encountered whose value is 1, and let c1 be the (back-ground) point immediately preceding b1 in
the sequence. Store the locations of b0 and b1 for use in Step 5.

2. Let b = b1 and c = c1.

3. Let the 8-neighbors of b, starting at c and proceeding in a clockwise direction, be denoted by
n1, n2, . . . , n8. Find the first nk labeled 1.

4. Let b = nk and c = nk−1

5. Repeat Step 3 and 4 until b = b0 and the next boundary point found in b1. The sequence of b
points found when the algorithm stops constitutes the set of ordered boundary points.

10/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary algorithm - stopping criterion

11.1 ■ Representation 797

4. Let and
5. Repeat Steps 3 and 4 until and the next boundary point found is

The sequence of points found when the algorithm stops constitutes the
set of ordered boundary points.

Note that in Step 4 always is a background point because is the first 1-valued
point found in the clockwise scan.This algorithm sometimes is referred to as the
Moore boundary tracking algorithm after Moore [1968]. The stopping rule in
Step 5 of the algorithm frequently is found stated incorrectly in the literature as
stopping the first time that is encountered again. As you will see shortly, this
can lead to erroneous results.

Figure 11.1 shows the first few steps of the boundary-following algo-
rithm just discussed. It easily is verified that continuing with this procedure
will yield the correct boundary shown in Fig. 11.1(e), whose points are a
clockwise-ordered sequence.

To examine the need for the stopping rule as stated in Step 5 of the algo-
rithm, consider the boundary in Fig. 11.2.The segment on the upper side of the
boundary could arise, for example, from incomplete spur removal (see Section
9.5.8 regarding spurs). Starting at the topmost leftmost point results in the
steps shown.We see in Fig. 11.2(c) that the algorithm has returned to the start-
ing point. If the procedure were stopped because we have reached the starting
point again, it is evident that the rest of the boundary would not be found.
Using the stopping rule in Step 5 allows the algorithm to continue, and it is a
simple matter to show that the entire boundary in Fig. 11.2 would be found.

The boundary-following algorithm works equally well if a region, rather
than its boundary (as in the preceding illustrations), is given. That is, the pro-
cedure extracts the outer boundary of a binary region. If the objective is to find
the boundaries of holes in a region (these are called the inner boundaries of
the region), a simple approach is to extract the holes (see Section 9.5.9) and
treat them as 1-valued regions on a background of 0s. Applying the boundary-
following algorithm to these regions will yield the inner boundaries of the
original region.

We could have stated the algorithm just as easily based on following a
boundary in the counterclockwise direction. In fact, you will encounter algo-
rithms formulated on the assumption that boundary points are ordered in that

b0

nkc

b
b1.b = b0

c = nk - 1.b = nk

1
1

1
111

1

1
1

1
1

11
1

1
11

c0 b0

1
1

1
1 1 1

1

c
b

FIGURE 11.2 Illustration of an erroneous result when the stopping rule is such that
boundary-following stops when the starting point, is encountered again.b0,

a b cFigure: Illustration of an erroneous result when the stopping rule is such that boundary-following stops when the
starting point, b0, is encountered again

11/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary representation: Chain Codes

� In order to represent a boundary, it is useful to compact the raw data (list of
boundary pixels)

� Chain codes: list of segments with defined length and direction
� 4-directional chain codes
� 8-directional chain codes

798 Chapter 11 ■ Representation and Description

direction. We use both directions interchangeably (but consistently) in the fol-
lowing sections to help you build familiarity with both approaches.

11.1.2 Chain Codes
Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. Typically, this repre-
sentation is based on 4- or 8-connectivity of the segments. The direction of
each segment is coded by using a numbering scheme, as in Fig. 11.3. A bound-
ary code formed as a sequence of such directional numbers is referred to as a
Freeman chain code.

Digital images usually are acquired and processed in a grid format with
equal spacing in the and y-directions, so a chain code can be generated by
following a boundary in, say, a clockwise direction and assigning a direction to
the segments connecting every pair of pixels. This method generally is unac-
ceptable for two principal reasons: (1) The resulting chain tends to be quite
long and (2) any small disturbances along the boundary due to noise or imper-
fect segmentation cause changes in the code that may not be related to the
principal shape features of the boundary.

An approach frequently used to circumvent these problems is to resample
the boundary by selecting a larger grid spacing, as Fig. 11.4(a) shows.Then, as
the boundary is traversed, a boundary point is assigned to each node of the
large grid, depending on the proximity of the original boundary to that node,
as in Fig. 11.4(b). The resampled boundary obtained in this way then can be
represented by a 4- or 8-code. Figure 11.4(c) shows the coarser boundary
points represented by an 8-directional chain code. It is a simple matter to
convert from an 8-code to a 4-code, and vice versa (see Problems 2.12 and 2.13).
The starting point in Fig. 11.4(c) is (arbitrarily) at the topmost, leftmost point
of the boundary, which gives the chain code As might be expected,
the accuracy of the resulting code representation depends on the spacing of
the sampling grid.

The chain code of a boundary depends on the starting point. However, the
code can be normalized with respect to the starting point by a straightfor-
ward procedure: We simply treat the chain code as a circular sequence of di-
rection numbers and redefine the starting point so that the resulting
sequence of numbers forms an integer of minimum magnitude. We can nor-
malize also for rotation (in angles that are integer multiples of the directions
in Fig. 11.3) by using the first difference of the chain code instead of the code

0766 Á 12.

x-

1

0

3

2

1

0

6

75

4

3

2

FIGURE 11.3
Direction
numbers for
(a) 4-directional
chain code, and
(b) 8-directional
chain code.

a b

Figure: Direction numbers for (a) 4-directional chain code, and (b) 8-directional chain code

12/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary representation: Chain Codes

� It may be useful to downsample the data before computing the chain code
� to reduce the code dimension
� to remove small detail along the boundary 11.1 ■ Representation 799

0
7

6

6

6

6

6

453

3

2

1

1
2

2

FIGURE 11.4
(a) Digital
boundary with
resampling grid
superimposed.
(b) Result of
resampling.
(c) 8-directional
chain-coded
boundary.

itself. This difference is obtained by counting the number of direction
changes (in a counterclockwise direction in Fig. 11.3) that separate two adja-
cent elements of the code. For instance, the first difference of the 4-direction
chain code 10103322 is 3133030. If we treat the code as a circular sequence to
normalize with respect to the starting point, then the first element of the dif-
ference is computed by using the transition between the last and first com-
ponents of the chain. Here, the result is 33133030. Size normalization can be
achieved by altering the size of the resampling grid.

These normalizations are exact only if the boundaries themselves are in-
variant to rotation (again, in angles that are integer multiples of the directions
in Fig. 11.3) and scale change, which seldom is the case in practice. For in-
stance, the same object digitized in two different orientations will have differ-
ent boundary shapes in general, with the degree of dissimilarity being
proportional to image resolution.This effect can be reduced by selecting chain
elements that are long in proportion to the distance between pixels in the dig-
itized image and/or by orienting the resampling grid along the principal axes
of the object to be coded, as discussed in Section 11.2.2, or along its eigen axes,
as discussed in Section 11.4.

EXAMPLE 11.1:
Freeman chain
code and some of
its variations.

■ Figure 11.5(a) shows a 8-bit gray-scale image of a circular
stroke embedded in small specular fragments.The objective of this example is
to obtain the Freeman chain code, the integer of minimum magnitude, and
the first difference of the outer boundary of the largest object in Fig. 11.5(a).
Because the object of interest is embedded in small fragments, extracting its
boundary would result is a noisy curve that would not be descriptive of the
general shape of the object. Smoothing is a routine process when working
with noisy boundaries. Figure 11.5(b) shows the original image smoothed
with an averaging mask of size and Fig. 11.5(c) is the result of thresh-
olding this image with a global threshold obtained using Otsu’s method. Note
that the number of regions has been reduced to two (one of which is a dot),
significantly simplifying the problem.

Figure 11.5(d) is the outer boundary of the largest region in Fig. 11.5(c).
Obtaining the chain code of this boundary directly would result in a long se-
quence with small variations that are not representative of the shape of the

9 * 9,

570 * 570,

a b c

Figure: (a) Digital boundary with resampling grid superimposed, (b) Result of resampling, (c) 8-directional
chain-coded boundary.

� Can you draw 4-directional chain-coded boundary?

798 Chapter 11 ■ Representation and Description

direction. We use both directions interchangeably (but consistently) in the fol-
lowing sections to help you build familiarity with both approaches.

11.1.2 Chain Codes
Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. Typically, this repre-
sentation is based on 4- or 8-connectivity of the segments. The direction of
each segment is coded by using a numbering scheme, as in Fig. 11.3. A bound-
ary code formed as a sequence of such directional numbers is referred to as a
Freeman chain code.

Digital images usually are acquired and processed in a grid format with
equal spacing in the and y-directions, so a chain code can be generated by
following a boundary in, say, a clockwise direction and assigning a direction to
the segments connecting every pair of pixels. This method generally is unac-
ceptable for two principal reasons: (1) The resulting chain tends to be quite
long and (2) any small disturbances along the boundary due to noise or imper-
fect segmentation cause changes in the code that may not be related to the
principal shape features of the boundary.

An approach frequently used to circumvent these problems is to resample
the boundary by selecting a larger grid spacing, as Fig. 11.4(a) shows.Then, as
the boundary is traversed, a boundary point is assigned to each node of the
large grid, depending on the proximity of the original boundary to that node,
as in Fig. 11.4(b). The resampled boundary obtained in this way then can be
represented by a 4- or 8-code. Figure 11.4(c) shows the coarser boundary
points represented by an 8-directional chain code. It is a simple matter to
convert from an 8-code to a 4-code, and vice versa (see Problems 2.12 and 2.13).
The starting point in Fig. 11.4(c) is (arbitrarily) at the topmost, leftmost point
of the boundary, which gives the chain code As might be expected,
the accuracy of the resulting code representation depends on the spacing of
the sampling grid.

The chain code of a boundary depends on the starting point. However, the
code can be normalized with respect to the starting point by a straightfor-
ward procedure: We simply treat the chain code as a circular sequence of di-
rection numbers and redefine the starting point so that the resulting
sequence of numbers forms an integer of minimum magnitude. We can nor-
malize also for rotation (in angles that are integer multiples of the directions
in Fig. 11.3) by using the first difference of the chain code instead of the code

0766 Á 12.

x-

1

0

3

2

1

0

6

75

4

3

2

FIGURE 11.3
Direction
numbers for
(a) 4-directional
chain code, and
(b) 8-directional
chain code.

a b

13/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary representation: Chain Codes
Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 11
Representation & Description

Chapter 11
Representation & Description

Digital Image Processing, 2nd ed.Digital Image Processing, 2nd ed.
www.imageprocessingbook.com

© 2002 R. C. Gonzalez & R. E. Woods

Chapter 11
Representation & Description

Chapter 11
Representation & Description

798 Chapter 11 ■ Representation and Description

direction. We use both directions interchangeably (but consistently) in the fol-
lowing sections to help you build familiarity with both approaches.

11.1.2 Chain Codes
Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. Typically, this repre-
sentation is based on 4- or 8-connectivity of the segments. The direction of
each segment is coded by using a numbering scheme, as in Fig. 11.3. A bound-
ary code formed as a sequence of such directional numbers is referred to as a
Freeman chain code.

Digital images usually are acquired and processed in a grid format with
equal spacing in the and y-directions, so a chain code can be generated by
following a boundary in, say, a clockwise direction and assigning a direction to
the segments connecting every pair of pixels. This method generally is unac-
ceptable for two principal reasons: (1) The resulting chain tends to be quite
long and (2) any small disturbances along the boundary due to noise or imper-
fect segmentation cause changes in the code that may not be related to the
principal shape features of the boundary.

An approach frequently used to circumvent these problems is to resample
the boundary by selecting a larger grid spacing, as Fig. 11.4(a) shows.Then, as
the boundary is traversed, a boundary point is assigned to each node of the
large grid, depending on the proximity of the original boundary to that node,
as in Fig. 11.4(b). The resampled boundary obtained in this way then can be
represented by a 4- or 8-code. Figure 11.4(c) shows the coarser boundary
points represented by an 8-directional chain code. It is a simple matter to
convert from an 8-code to a 4-code, and vice versa (see Problems 2.12 and 2.13).
The starting point in Fig. 11.4(c) is (arbitrarily) at the topmost, leftmost point
of the boundary, which gives the chain code As might be expected,
the accuracy of the resulting code representation depends on the spacing of
the sampling grid.

The chain code of a boundary depends on the starting point. However, the
code can be normalized with respect to the starting point by a straightfor-
ward procedure: We simply treat the chain code as a circular sequence of di-
rection numbers and redefine the starting point so that the resulting
sequence of numbers forms an integer of minimum magnitude. We can nor-
malize also for rotation (in angles that are integer multiples of the directions
in Fig. 11.3) by using the first difference of the chain code instead of the code

0766 Á 12.

x-

1

0

3

2

1

0

6

75

4

3

2

FIGURE 11.3
Direction
numbers for
(a) 4-directional
chain code, and
(b) 8-directional
chain code.

a b

Chain code: 0033333323221211101101

14/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary representation: Differential Chain Code

� The chain code of a boundary depends on the starting point.
� normalize with respect to the starting point (circular sequence)
� the new starting point is the one who gives a sequence of numbers giving the

smallest/largest integer.
� Normalize with respect to rotation:

� First difference can be used
� E.g., 10103322⇒ 3133030 (counting CCW) and adding the last transition (circular

sequence: 2⇒ 1)
⇒ 31330303 (Differential Chain Code)
⇒ 03033133 (Independent of starting point, i.e., rotation invariant)

798 Chapter 11 ■ Representation and Description

direction. We use both directions interchangeably (but consistently) in the fol-
lowing sections to help you build familiarity with both approaches.

11.1.2 Chain Codes
Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. Typically, this repre-
sentation is based on 4- or 8-connectivity of the segments. The direction of
each segment is coded by using a numbering scheme, as in Fig. 11.3. A bound-
ary code formed as a sequence of such directional numbers is referred to as a
Freeman chain code.

Digital images usually are acquired and processed in a grid format with
equal spacing in the and y-directions, so a chain code can be generated by
following a boundary in, say, a clockwise direction and assigning a direction to
the segments connecting every pair of pixels. This method generally is unac-
ceptable for two principal reasons: (1) The resulting chain tends to be quite
long and (2) any small disturbances along the boundary due to noise or imper-
fect segmentation cause changes in the code that may not be related to the
principal shape features of the boundary.

An approach frequently used to circumvent these problems is to resample
the boundary by selecting a larger grid spacing, as Fig. 11.4(a) shows.Then, as
the boundary is traversed, a boundary point is assigned to each node of the
large grid, depending on the proximity of the original boundary to that node,
as in Fig. 11.4(b). The resampled boundary obtained in this way then can be
represented by a 4- or 8-code. Figure 11.4(c) shows the coarser boundary
points represented by an 8-directional chain code. It is a simple matter to
convert from an 8-code to a 4-code, and vice versa (see Problems 2.12 and 2.13).
The starting point in Fig. 11.4(c) is (arbitrarily) at the topmost, leftmost point
of the boundary, which gives the chain code As might be expected,
the accuracy of the resulting code representation depends on the spacing of
the sampling grid.

The chain code of a boundary depends on the starting point. However, the
code can be normalized with respect to the starting point by a straightfor-
ward procedure: We simply treat the chain code as a circular sequence of di-
rection numbers and redefine the starting point so that the resulting
sequence of numbers forms an integer of minimum magnitude. We can nor-
malize also for rotation (in angles that are integer multiples of the directions
in Fig. 11.3) by using the first difference of the chain code instead of the code

0766 Á 12.

x-

1

0

3

2

1

0

6

75

4

3

2

FIGURE 11.3
Direction
numbers for
(a) 4-directional
chain code, and
(b) 8-directional
chain code.

a b

15/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Differential Chain Code 11.1 ■ Representation 799

0
7

6

6

6

6

6

453

3

2

1

1
2

2

FIGURE 11.4
(a) Digital
boundary with
resampling grid
superimposed.
(b) Result of
resampling.
(c) 8-directional
chain-coded
boundary.

itself. This difference is obtained by counting the number of direction
changes (in a counterclockwise direction in Fig. 11.3) that separate two adja-
cent elements of the code. For instance, the first difference of the 4-direction
chain code 10103322 is 3133030. If we treat the code as a circular sequence to
normalize with respect to the starting point, then the first element of the dif-
ference is computed by using the transition between the last and first com-
ponents of the chain. Here, the result is 33133030. Size normalization can be
achieved by altering the size of the resampling grid.

These normalizations are exact only if the boundaries themselves are in-
variant to rotation (again, in angles that are integer multiples of the directions
in Fig. 11.3) and scale change, which seldom is the case in practice. For in-
stance, the same object digitized in two different orientations will have differ-
ent boundary shapes in general, with the degree of dissimilarity being
proportional to image resolution.This effect can be reduced by selecting chain
elements that are long in proportion to the distance between pixels in the dig-
itized image and/or by orienting the resampling grid along the principal axes
of the object to be coded, as discussed in Section 11.2.2, or along its eigen axes,
as discussed in Section 11.4.

EXAMPLE 11.1:
Freeman chain
code and some of
its variations.

■ Figure 11.5(a) shows a 8-bit gray-scale image of a circular
stroke embedded in small specular fragments.The objective of this example is
to obtain the Freeman chain code, the integer of minimum magnitude, and
the first difference of the outer boundary of the largest object in Fig. 11.5(a).
Because the object of interest is embedded in small fragments, extracting its
boundary would result is a noisy curve that would not be descriptive of the
general shape of the object. Smoothing is a routine process when working
with noisy boundaries. Figure 11.5(b) shows the original image smoothed
with an averaging mask of size and Fig. 11.5(c) is the result of thresh-
olding this image with a global threshold obtained using Otsu’s method. Note
that the number of regions has been reduced to two (one of which is a dot),
significantly simplifying the problem.

Figure 11.5(d) is the outer boundary of the largest region in Fig. 11.5(c).
Obtaining the chain code of this boundary directly would result in a long se-
quence with small variations that are not representative of the shape of the

9 * 9,

570 * 570,

a b c

Can you write the Differential Chain Code?
� Chain code: 0766666453321212
� Differential chain code: 7700006160771716
� Differential chain code (rotation invariant): 0000616077171677

16/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Differential Chain Code: Validation

11.1
■

R
epresentation

799

0
7

66666

4
5

3

3

2

1

1
2

2

FIG
U

R
E

11.4
(a) D

igital
boundary w

ith
resam

pling grid
superim

posed.
(b) R

esult of
resam

pling.
(c) 8-directional
chain-coded
boundary.

itself.
T

his difference is obtained by counting the num
ber of direction

changes (in a counterclockw
ise direction in Fig.11.3) that separate tw

o adja-
cent elem

ents of the code.For instance,the first difference of the 4-direction
chain code 10103322 is 3133030.If w

e treat the code as a circular sequence to
norm

alize w
ith respect to the starting point,then the first elem

ent of the dif-
ference is com

puted by using the transition betw
een the last and first com

-
ponents of the chain.H

ere,the result is 33133030.Size norm
alization can be

achieved by altering the size of the resam
pling grid.

T
hese norm

alizations are exact only if the boundaries them
selves are in-

variant to rotation (again,in angles that are integer m
ultiples of the directions

in Fig.
11.3) and scale change,

w
hich seldom

 is the case in practice.
For in-

stance,the sam
e object digitized in tw

o different orientations w
ill have differ-

ent
boundary

shapes
in

general,
w

ith
the

degree
of

dissim
ilarity

being
proportional to im

age resolution.T
his effect can be reduced by selecting chain

elem
ents that are long in proportion to the distance betw

een pixels in the dig-
itized im

age and/or by orienting the resam
pling grid along the principal axes

of the object to be coded,as discussed in Section 11.2.2,or along its eigen axes,
as discussed in Section 11.4.

E
X

A
M

P
L

E
 11.1:

Freem
an chain

code and som
e of

its variations.

■
Figure 11.5(a)

show
s a

8-bit gray-scale im
age of a circular

stroke em
bedded in sm

all specular fragm
ents.T

he objective of this exam
ple is

to obtain the Freem
an chain code,the integer of m

inim
um

 m
agnitude,and

the first difference of the outer boundary of the largest object in Fig.11.5(a).
B

ecause the object of interest is em
bedded in sm

all fragm
ents,extracting its

boundary w
ould result is a noisy curve that w

ould not be descriptive of the
general shape of the object.

Sm
oothing is a routine process w

hen w
orking

w
ith noisy boundaries.

Figure 11.5(b)
show

s the original im
age sm

oothed
w

ith an averaging m
ask of size

and Fig.11.5(c)
is the result of thresh-

olding this im
age w

ith a global threshold obtained using O
tsu’s m

ethod.N
ote

that the num
ber of regions has been reduced to tw

o (one of w
hich is a dot),

significantly sim
plifying the problem

.
Figure 11.5(d)

is the outer boundary of the largest region in Fig.11.5(c).
O

btaining the chain code of this boundary directly w
ould result in a long se-

quence w
ith sm

all variations that are not representative of the shape of the

9
*

9,

570
*

570,

a
b

c

11.1
■

R
epresentation

799

0
7

66666

4
5

3

3

2

1

1
2

2

FIG
U

R
E

11.4
(a) D

igital
boundary w

ith
resam

pling grid
superim

posed.
(b) R

esult of
resam

pling.
(c) 8-directional
chain-coded
boundary.

itself.
T

his difference is obtained by counting the num
ber of direction

changes (in a counterclockw
ise direction in Fig.11.3) that separate tw

o adja-
cent elem

ents of the code.For instance,the first difference of the 4-direction
chain code 10103322 is 3133030.If w

e treat the code as a circular sequence to
norm

alize w
ith respect to the starting point,then the first elem

ent of the dif-
ference is com

puted by using the transition betw
een the last and first com

-
ponents of the chain.H

ere,the result is 33133030.Size norm
alization can be

achieved by altering the size of the resam
pling grid.

T
hese norm

alizations are exact only if the boundaries them
selves are in-

variant to rotation (again,in angles that are integer m
ultiples of the directions

in Fig.
11.3) and scale change,

w
hich seldom

 is the case in practice.
For in-

stance,the sam
e object digitized in tw

o different orientations w
ill have differ-

ent
boundary

shapes
in

general,
w

ith
the

degree
of

dissim
ilarity

being
proportional to im

age resolution.T
his effect can be reduced by selecting chain

elem
ents that are long in proportion to the distance betw

een pixels in the dig-
itized im

age and/or by orienting the resam
pling grid along the principal axes

of the object to be coded,as discussed in Section 11.2.2,or along its eigen axes,
as discussed in Section 11.4.

E
X

A
M

P
L

E
 11.1:

Freem
an chain

code and som
e of

its variations.

■
Figure 11.5(a)

show
s a

8-bit gray-scale im
age of a circular

stroke em
bedded in sm

all specular fragm
ents.T

he objective of this exam
ple is

to obtain the Freem
an chain code,the integer of m

inim
um

 m
agnitude,and

the first difference of the outer boundary of the largest object in Fig.11.5(a).
B

ecause the object of interest is em
bedded in sm

all fragm
ents,extracting its

boundary w
ould result is a noisy curve that w

ould not be descriptive of the
general shape of the object.

Sm
oothing is a routine process w

hen w
orking

w
ith noisy boundaries.

Figure 11.5(b)
show

s the original im
age sm

oothed
w

ith an averaging m
ask of size

and Fig.11.5(c)
is the result of thresh-

olding this im
age w

ith a global threshold obtained using O
tsu’s m

ethod.N
ote

that the num
ber of regions has been reduced to tw

o (one of w
hich is a dot),

significantly sim
plifying the problem

.
Figure 11.5(d)

is the outer boundary of the largest region in Fig.11.5(c).
O

btaining the chain code of this boundary directly w
ould result in a long se-

quence w
ith sm

all variations that are not representative of the shape of the

9
*

9,

570
*

570,

a
b

c

11.1
■

R
epresentation

799

FIG
U

R
E

11.4
(a) D

igital
boundary w

ith
resam

pling grid
superim

posed.
(b) R

esult of
resam

pling.
(c) 8-directional
chain-coded
boundary.

itself.
T

his difference is obtained by counting the num
ber of direction

changes (in a counterclockw
ise direction in Fig.11.3) that separate tw

o adja-
cent elem

ents of the code.For instance,the first difference of the 4-direction
chain code 10103322 is 3133030.If w

e treat the code as a circular sequence to
norm

alize w
ith respect to the starting point,then the first elem

ent of the dif-
ference is com

puted by using the transition betw
een the last and first com

-
ponents of the chain.H

ere,the result is 33133030.Size norm
alization can be

achieved by altering the size of the resam
pling grid.

T
hese norm

alizations are exact only if the boundaries them
selves are in-

variant to rotation (again,in angles that are integer m
ultiples of the directions

in Fig.
11.3) and scale change,

w
hich seldom

 is the case in practice.
For in-

stance,the sam
e object digitized in tw

o different orientations w
ill have differ-

ent
boundary

shapes
in

general,
w

ith
the

degree
of

dissim
ilarity

being
proportional to im

age resolution.T
his effect can be reduced by selecting chain

elem
ents that are long in proportion to the distance betw

een pixels in the dig-
itized im

age and/or by orienting the resam
pling grid along the principal axes

of the object to be coded,as discussed in Section 11.2.2,or along its eigen axes,
as discussed in Section 11.4.

E
X

A
M

P
L

E
 11.1:

Freem
an chain

code and som
e of

its variations.

■
Figure 11.5(a)

show
s a

8-bit gray-scale im
age of a circular

stroke em
bedded in sm

all specular fragm
ents.T

he objective of this exam
ple is

to obtain the Freem
an chain code,the integer of m

inim
um

 m
agnitude,and

the first difference of the outer boundary of the largest object in Fig.11.5(a).
B

ecause the object of interest is em
bedded in sm

all fragm
ents,extracting its

boundary w
ould result is a noisy curve that w

ould not be descriptive of the
general shape of the object.

Sm
oothing is a routine process w

hen w
orking

w
ith noisy boundaries.

Figure 11.5(b)
show

s the original im
age sm

oothed
w

ith an averaging m
ask of size

and Fig.11.5(c)
is the result of thresh-

olding this im
age w

ith a global threshold obtained using O
tsu’s m

ethod.N
ote

that the num
ber of regions has been reduced to tw

o (one of w
hich is a dot),

significantly sim
plifying the problem

.
Figure 11.5(d)

is the outer boundary of the largest region in Fig.11.5(c).
O

btaining the chain code of this boundary directly w
ould result in a long se-

quence w
ith sm

all variations that are not representative of the shape of the

9
*

9,

570
*

570,

a
b

c

Can you write the Differential Chain Code?

� Chain code: 0707065444442311

� Differential chain code: 7171677000061607

� Differential chain code: 0000616077171677 (validated)

� Is the differential chain code is invariant to rotation at any angle? (HW)

17/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Polygonal Approximation

� A digital boundary can be approximated with arbitrary accuracy by a polygon.
� In practice, the goal of polygonal approximation is to capture the “essence” of the boundary

shape with the fewest possible polygonal segments.
� Minimum-perimeter polygon
� Splitting technique

11.1 ■ Representation 801

Using any of these codes to represent the boundary results in a significant
reduction in the amount of data needed to store the boundary. In addition,
working with code numbers offers a unified way to analyze the shape of a
boundary, as we discuss in Section 11.2. Finally, keep in mind that the subsampled
boundary can be recovered from any of the preceding codes. ■

11.1.3 Polygonal Approximations Using Minimum-Perimeter
Polygons

A digital boundary can be approximated with arbitrary accuracy by a polygon.
For a closed boundary, the approximation becomes exact when the number of
segments of the polygon is equal to the number of points in the boundary so that
each pair of adjacent points defines a segment of the polygon. The goal of a
polygonal approximation is to capture the essence of the shape in a given bound-
ary using the fewest possible number of segments. This problem is not trivial in
general and can turn into a time-consuming iterative search. However, approxi-
mation techniques of modest complexity are well suited for image processing
tasks. Among these, one of the most powerful is representing a boundary by a
minimum-perimeter polygon (MPP), as defined in the following discussion.

Foundation

An intuitively appealing approach for generating an algorithm to compute
MPPs is to enclose a boundary [Fig. 11.6(a)] by a set of concatenated cells, as
in Fig. 11.6(b). Think of the boundary as a rubber band. As it is allowed to
shrink, the rubber band will be constrained by the inner and outer walls of

FIGURE 11.6 (a) An object boundary (black curve). (b) Boundary enclosed by cells (in gray). (c) Minimum-
perimeter polygon obtained by allowing the boundary to shrink. The vertices of the polygon are created by
the corners of the inner and outer walls of the gray region.

a b c

Figure: (a) An object boundary (black curve). (b) Boundary enclosed by cells (in gray). (c) Minimum-perimeter
polygon obtained by allowing the boundary to shrink. The vertices of the polygon are created by the corners of
the inner and outer walls of the gray region.

18/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Polygonal Approximation: Minimum-Perimeter Polygon

802 Chapter 11 ■ Representation and Description

the bounding region defined by the cells. Ultimately, this shrinking produces
the shape of a polygon of minimum perimeter (with respect to this geometri-
cal arrangement) that circumscribes the region enclosed by the cell strip, as
Fig. 11.6(c) shows. Note in this figure that all the vertices of the MPP coin-
cide with corners of either the inner or the outer wall.

The size of the cells determines the accuracy of the polygonal approxima-
tion. In the limit, if the size of each (square) cell corresponds to a pixel in the
boundary, the error in each cell between the boundary and the MPP approxi-
mation at most would be where is the minimum possible distance be-
tween pixels (i.e., the distance between pixels established by the resolution of
the original sampled boundary). This error can be reduced in half by forcing
each cell in the polygonal approximation to be centered on its corresponding
pixel in the original boundary. The objective is to use the largest possible cell
size acceptable in a given application, thus producing MPPs with the fewest
number of vertices. Our objective in this section is to formulate a procedure
for finding these MPP vertices.

The cellular approach just described reduces the shape of the object en-
closed by the original boundary to the area circumscribed by the gray wall in
Fig. 11.6(b). Figure 11.7(a) shows this shape in dark gray.We see that its boundary
consists of 4-connected straight line segments. Suppose that we traverse this
boundary in a counterclockwise direction. Every turn encountered in the traversal
will be either a convex or a concave vertex, with the angle of a vertex being an
interior angle of the 4-connected boundary. Convex and concave vertices are

d22d,

FIGURE 11.7 (a) Region (dark gray) resulting from enclosing the original boundary by cells (see Fig. 11.6).
(b) Convex (white dots) and concave (black dots) vertices obtained by following the boundary of the dark
gray region in the counterclockwise direction. (c) Concave vertices (black dots) displaced to their diagonal
mirror locations in the outer wall of the bounding region; the convex vertices are not changed. The MPP
(black boundary) is superimposed for reference.

a b c
Figure: (a) Region (dark gray) resulting from enclosing the original boundary by cells. (b) Convex (white dots)
and concave (black dots) vertices obtained by following the boundary of the dark gray region in the
counterclockwise direction. (c) Concave vertices (black dots) displaced to their diagonal mirror locations in the
outer wall of the bounding region; the convex vertices are not changed. The MPP (black boundary) is
superimposed for reference.

19/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Polygonal Approximation: Splitting Technique

� One approach to boundary segment splitting is to subdivide a segment successively
into two part until a specified criterion is satisfied.

808 Chapter 11 ■ Representation and Description

until the error threshold is exceeded. If, for instance, a long straight line were
being tracked and it turned a corner, a number (depending on the threshold) of
points past the corner would be absorbed before the threshold was exceeded.
However, splitting (discussed next) along with merging can be used to alleviate
this difficulty.

Splitting techniques

One approach to boundary segment splitting is to subdivide a segment suc-
cessively into two parts until a specified criterion is satisfied. For instance, a
requirement might be that the maximum perpendicular distance from a
boundary segment to the line joining its two end points not exceed a preset
threshold. If it does, the point having the greatest distance from the line be-
comes a vertex, thus subdividing the initial segment into two subsegments.
This approach has the advantage of seeking prominent inflection points. For a
closed boundary, the best starting points usually are the two farthest points
in the boundary. For example, Fig. 11.9(a) shows an object boundary, and
Fig. 11.9(b) shows a subdivision of this boundary about its farthest points.
The point marked is the farthest point (in terms of perpendicular distance)
from the top boundary segment to line Similarly, point is the farthest
point in the bottom segment. Figure 11.9(c) shows the result of using the split-
ting procedure with a threshold equal to 0.25 times the length of line As
no point in the new boundary segments has a perpendicular distance (to its
corresponding straight-line segment) that exceeds this threshold, the proce-
dure terminates with the polygon in Fig. 11.9(d).

11.1.5 Signatures
A signature is a 1-D functional representation of a boundary and may be gen-
erated in various ways. One of the simplest is to plot the distance from the cen-
troid to the boundary as a function of angle, as illustrated in Fig. 11.10.
Regardless of how a signature is generated, however, the basic idea is to re-
duce the boundary representation to a 1-D function that presumably is easier
to describe than the original 2-D boundary.

ab.

dab.
c

a

b

c

d

a

b

c

d

a

b

c

d

FIGURE 11.9
(a) Original
boundary.
(b) Boundary
divided into
segments based
on extreme
points. (c) Joining
of vertices.
(d) Resulting
polygon.

a b
c d

Figure: (a) Original boundary, (b) Boundary divided into segments based on extreme points, (c) Joining of
vertices, (d) Resulting polygon

20/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Polygonal Approximation: Splitting Technique

� For a closed boundary, the best starting points usually are two farthest points in the
boundary.

� Farthest point can be obtained by Karhunen-Loeve transform (KLT).

� The maximum perpendicular distance from a boundary segment to the line joining
its two end points not exceed a preset threshold.

� Splitting procedure with a threshold equal to 0.25 times the length of line ab.

21/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Signatures

� A signature is a 1-D representation of a boundary (which is a 2-D thing): it should
be easier to describe.
e.g., distance form the centroid vs angle.

11.1 ■ Representation 809

A

0 0

r(u)

A

r
u

A

r
u

u

p

4
p

2
3p
4

5p
4

3p
2

7p
4

p 2p

A

r(u)

u

p

4
p

2
3p
4

5p
4

3p
2

7p
4

p 2p

2A

FIGURE 11.10
Distance-versus-
angle signatures.
In (a) is
constant. In
(b), the signature
consists of
repetitions of the
pattern

for
and
for

p>4 6 u … p>2.
r(u) = A csc u
0 … u … p>4r(u) = A sec u

r(u)

Signatures generated by the approach just described are invariant to trans-
lation, but they do depend on rotation and scaling. Normalization with respect
to rotation can be achieved by finding a way to select the same starting point
to generate the signature, regardless of the shape’s orientation. One way to do
so is to select the starting point as the point farthest from the centroid, assum-
ing that this point is unique for each shape of interest.Another way is to select
the point on the eigen axis (see Section 11.4) that is farthest from the centroid.
This method requires more computation but is more rugged because the di-
rection of the eigen axis is determined by using all contour points. Yet another
way is to obtain the chain code of the boundary and then use the approach dis-
cussed in Section 11.1.2, assuming that the coding is coarse enough so that ro-
tation does not affect its circularity.

Based on the assumptions of uniformity in scaling with respect to both axes,
and that sampling is taken at equal intervals of changes in size of a shape re-
sult in changes in the amplitude values of the corresponding signature. One
way to normalize for this is to scale all functions so that they always span the
same range of values, e.g., [0, 1]. The main advantage of this method is simplic-
ity, but it has the potentially serious disadvantage that scaling of the entire
function depends on only two values: the minimum and maximum. If the
shapes are noisy, this dependence can be a source of significant error from ob-
ject to object. A more rugged (but also more computationally intensive) ap-
proach is to divide each sample by the variance of the signature, assuming that
the variance is not zero—as in the case of Fig. 11.10(a)—or so small that it cre-
ates computational difficulties. Use of the variance yields a variable scaling
factor that is inversely proportional to changes in size and works much as au-
tomatic gain control does. Whatever the method used, keep in mind that the
basic idea is to remove dependency on size while preserving the fundamental
shape of the waveforms.

u,

a b

Figure: Distance-versus-angle signatures. (a) r(θ), is constant, (b) the signature consists of repetitions of
the pattern r(θ) = Asec(θ) for 0 ≤ θ ≤ π/4 and r(θ) = Acsc(θ) for π/4 < θ ≤ π/2

22/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Signatures

� Signatures are invariant to translation, but variant to rotation.

� Invariant to rotation: depends on the starting point
� the starting point could be the farthest point from the centroid.

� Scaling varies the amplitude of the signature
� invariance can be obtained by normalizing between 0 and 1, or
� by dividing by the variance of the signature (does not work on circle)

23/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary Segments

� Decomposing a boundary into segments often is useful.

� Decomposition reduces the boundary’s complexity and thus simplifies the
description process.

� In this case use of the convex hull of the region enclosed by the boundary is a
powerful tool for robust decomposition of the boundary.

24/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary Segments

� Convex hull H of an arbitrary set S is the smallest convex set containing S.

� The set difference H − S is called the convex deficiency D of the set S.

� Note that in principle, this scheme is independent of region size and orientation.

11.1 ■ Representation 811

FIGURE 11.11
Two binary regions,
their external
boundaries, and
their corresponding

signatures.The
horizontal axes in
(e) and (f) corre-
spond to angles
from 0° to 360°, in
increments of 1°.

r(u)

S

FIGURE 11.12
(a) A region,
and its convex
deficiency
(shaded).
(b) Partitioned
boundary.

S,

a
c
e

b
d
f

a b

segments of the boundary. A more rugged technique is to use a polygonal ap-
proximation prior to finding the convex deficiency of a region. Most digital
boundaries of interest are simple polygons (recall from Section 11.1.3 that
these are polygons without self-intersection). Graham and Yao [1983] give an
algorithm for finding the convex hull of such polygons.

Figure: (a) A region, S, and its convex deficiency (shaded). (b) Partitioned boundary.

25/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Skeletonization

� One way to represent a shape is to reduce it to a graph, by obtaining its skeleton
via thinning (skeletonization)

� MAT (Medial axis transformation) is composed by all the points which have more
than one closest boundary points (“prairie fire concept”)

812 Chapter 11 ■ Representation and Description

The concepts of a convex hull and its deficiency are equally useful for de-
scribing an entire region, as well as just its boundary. For example, description
of a region might be based on its area and the area of its convex deficiency, the
number of components in the convex deficiency, the relative location of these
components, and so on. Recall that a morphological algorithm for finding the
convex hull was developed in Section 9.5.4. References cited at the end of this
chapter contain other formulations.

11.1.7 Skeletons
An important approach to representing the structural shape of a plane region
is to reduce it to a graph.This reduction may be accomplished by obtaining the
skeleton of the region via a thinning (also called skeletonizing) algorithm.
Thinning procedures play a central role in a broad range of problems in image
processing, ranging from automated inspection of printed circuit boards to
counting of asbestos fibers in air filters. We already discussed in Section 9.5.7
the basics of skeletonizing using morphology. However, as noted in that sec-
tion, the procedure discussed there made no provisions for keeping the skele-
ton connected. The algorithm developed here corrects that problem.

The skeleton of a region may be defined via the medial axis transformation
(MAT) proposed by Blum [1967]. The MAT of a region with border is as
follows. For each point in we find its closest neighbor in If has more
than one such neighbor, it is said to belong to the medial axis (skeleton) of
The concept of “closest” (and the resulting MAT) depend on the definition of
a distance (see Section 2.5.3). Figure 11.13 shows some examples using the Eu-
clidean distance. The same results would be obtained with the maximum disk
of Section 9.5.7.

The MAT of a region has an intuitive definition based on the so-called
“prairie fire concept.” Consider an image region as a prairie of uniform, dry
grass, and suppose that a fire is lit along its border. All fire fronts will advance
into the region at the same speed. The MAT of the region is the set of points
reached by more than one fire front at the same time.

Although the MAT of a region yields an intuitively pleasing skeleton, di-
rect implementation of this definition is expensive computationally. Imple-
mentation potentially involves calculating the distance from every interior

R.
pB.R,p

BR

FIGURE 11.13
Medial axes
(dashed) of three
simple regions.

a b c

(a)

814 Chapter 11 ■ Representation and Description

Step 1 is applied to every border pixel in the binary region under consider-
ation. If one or more of conditions (a)–(d) are violated, the value of the point
in question is not changed. If all conditions are satisfied, the point is flagged
for deletion. However, the point is not deleted until all border points have
been processed. This delay prevents changing the structure of the data during
execution of the algorithm. After Step 1 has been applied to all border points,
those that were flagged are deleted (changed to 0). Then Step 2 is applied to
the resulting data in exactly the same manner as Step 1.

Thus, one iteration of the thinning algorithm consists of (1) applying Step 1 to
flag border points for deletion; (2) deleting the flagged points; (3) applying Step 2
to flag the remaining border points for deletion; and (4) deleting the flagged
points.This basic procedure is applied iteratively until no further points are delet-
ed, at which time the algorithm terminates, yielding the skeleton of the region.

Condition (a) is violated when contour point has only one or seven
8-neighbors valued 1. Having only one such neighbor implies that is the end
point of a skeleton stroke and obviously should not be deleted. Deleting if it
had seven such neighbors would cause erosion into the region. Condition (b) is
violated when it is applied to points on a stroke 1 pixel thick. Hence this condi-
tion prevents breaking segments of a skeleton during the thinning operation.
Conditions (c) and (d) are satisfied simultaneously by the minimum set of val-
ues: or Thus with reference to the
neighborhood arrangement in Fig. 11.14, a point that satisfies these conditions,
as well as conditions (a) and (b), is an east or south boundary point or a north-
west corner point in the boundary. In either case, is not part of the skeleton
and should be removed. Similarly, conditions and are satisfied simulta-
neously by the following minimum set of values: or

These correspond to north or west boundary points, or a
southeast corner point. Note that northeast corner points have and

and thus satisfy conditions (c) and (d), as well as and The same
is true for southwest corner points, which have and p8 = 0.p6 = 0

(d¿).(c¿)p4 = 0
p2 = 0

(p4 = 0 and p6 = 0).
(p2 = 0 or p8 = 0)

(d¿)(c¿)
p1

(p2 = 0 and p8 = 0).(p4 = 0 or p6 = 0)

p1

p1

p1

FIGURE 11.16
Human leg bone
and skeleton of
the region shown
superimposed.

(b)

Figure: (a) Medial axes (dashed) of three simple regions,(b) Human leg bone and skeleton of the region

26/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Boundary Features/Descriptors

27/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Simple descriptors
� length of a boundary is one of its simplest descriptors.

� The number of pixels along a boundary gives a rough approximation of its length.
� For a chain coded curve with unit spacing:

length = Horizontal + Vertical +
√
2×Diagonal

� diameter (length of the major axis)

Diam(B) = max
i,j

[D(pi, pj)]

� The minor axis of a boundary is defined as the line perpendicular to the major axis.
� Basic rectangle (formed by the major and the minor axis; encloses the boundary)

and its

eccentricity =
major axis

minor axis

28/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Shape Number

� Shape number: the first difference as smallest magnitude (treating the chain code
as a circular sequence)

� Order of a shape: the number of digits in Shape number.

816 Chapter 11 ■ Representation and Description

otherwise, is said to belong to a segment that is concave. The description of
curvature at a point can be refined further by using ranges in the change of
slope. For instance, could be part of a nearly straight segment if the change is
less than 10° or a corner point if the change exceeds 90°.These descriptors must
be used with care because their interpretation depends on the length of the in-
dividual segments relative to the overall length of the boundary.

11.2.2 Shape Numbers
As explained in Section 11.1.2, the first difference of a chain-coded boundary
depends on the starting point. The shape number of such a boundary, based on
the 4-directional code of Fig. 11.3(a), is defined as the first difference of small-
est magnitude. The order of a shape number is defined as the number of dig-
its in its representation. Moreover, is even for a closed boundary, and its
value limits the number of possible different shapes. Figure 11.17 shows all the
shapes of order 4, 6, and 8, along with their chain-code representations, first
differences, and corresponding shape numbers. Note that the first difference is
computed by treating the chain code as a circular sequence, as discussed in
Section 11.1.2. Although the first difference of a chain code is independent of
rotation, in general the coded boundary depends on the orientation of the
grid. One way to normalize the grid orientation is by aligning the chain-code
grid with the sides of the basic rectangle defined in the previous section.

In practice, for a desired shape order, we find the rectangle of order
whose eccentricity (defined in the previous section) best approximates that of
the basic rectangle and use this new rectangle to establish the grid size. For

n

n
n

p

p

Order 4

Chain code: 0 3 2 1

Difference: 3 3 3 3

Shape no.: 3 3 3 3

Order 6

0 0 3 2 2 1

3 0 3 3 0 3

0 3 3 0 3 3

Chain code: 0 0 3 3 2 2 1 1

Difference: 3 0 3 0 3 0 3 0

Shape no.:

Order 8

0 3 0 3 2 2 1 1

3 3 1 3 3 0 3 0

0 3 0 3 3 1 3 3

0 0 0 3 2 2 2 1

3 0 0 3 3 0 0 3

0 0 3 3 0 0 3 30 3 0 3 0 3 0 3

FIGURE 11.17
All shapes of
order 4, 6, and 8.
The directions are
from Fig. 11.3(a),
and the dot
indicates the
starting point.

798 Chapter 11 ■ Representation and Description

direction. We use both directions interchangeably (but consistently) in the fol-
lowing sections to help you build familiarity with both approaches.

11.1.2 Chain Codes
Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. Typically, this repre-
sentation is based on 4- or 8-connectivity of the segments. The direction of
each segment is coded by using a numbering scheme, as in Fig. 11.3. A bound-
ary code formed as a sequence of such directional numbers is referred to as a
Freeman chain code.

Digital images usually are acquired and processed in a grid format with
equal spacing in the and y-directions, so a chain code can be generated by
following a boundary in, say, a clockwise direction and assigning a direction to
the segments connecting every pair of pixels. This method generally is unac-
ceptable for two principal reasons: (1) The resulting chain tends to be quite
long and (2) any small disturbances along the boundary due to noise or imper-
fect segmentation cause changes in the code that may not be related to the
principal shape features of the boundary.

An approach frequently used to circumvent these problems is to resample
the boundary by selecting a larger grid spacing, as Fig. 11.4(a) shows.Then, as
the boundary is traversed, a boundary point is assigned to each node of the
large grid, depending on the proximity of the original boundary to that node,
as in Fig. 11.4(b). The resampled boundary obtained in this way then can be
represented by a 4- or 8-code. Figure 11.4(c) shows the coarser boundary
points represented by an 8-directional chain code. It is a simple matter to
convert from an 8-code to a 4-code, and vice versa (see Problems 2.12 and 2.13).
The starting point in Fig. 11.4(c) is (arbitrarily) at the topmost, leftmost point
of the boundary, which gives the chain code As might be expected,
the accuracy of the resulting code representation depends on the spacing of
the sampling grid.

The chain code of a boundary depends on the starting point. However, the
code can be normalized with respect to the starting point by a straightfor-
ward procedure: We simply treat the chain code as a circular sequence of di-
rection numbers and redefine the starting point so that the resulting
sequence of numbers forms an integer of minimum magnitude. We can nor-
malize also for rotation (in angles that are integer multiples of the directions
in Fig. 11.3) by using the first difference of the chain code instead of the code

0766 Á 12.

x-

1

0

3

2

1

0

6

75

4

3

2

FIGURE 11.3
Direction
numbers for
(a) 4-directional
chain code, and
(b) 8-directional
chain code.

a b

29/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Shape Number

� It is advisable to normalize the grid orientation by aligning the chain code grid to
the basic rectangle.

11.2 ■ Boundary Descriptors 817

example, if all the rectangles of order 12 (that is, those whose perime-
ter length is 12) are and If the eccentricity of the
rectangle best matches the eccentricity of the basic rectangle for a given
boundary, we establish a grid centered on the basic rectangle and use
the procedure outlined in Section 11.1.2 to obtain the chain code. The shape
number follows from the first difference of this code. Although the order of
the resulting shape number usually equals because of the way the grid spac-
ing was selected, boundaries with depressions comparable to this spacing
sometimes yield shape numbers of order greater than In this case, we spec-
ify a rectangle of order lower than and repeat the procedure until the re-
sulting shape number is of order n.

n
n.

n

2 * 4

2 * 41 * 5.2 * 4, 3 * 3,
n = 12,

EXAMPLE 11.6:
Computing shape
numbers.

■ Suppose that is specified for the boundary in Fig. 11.18(a). To ob-
tain a shape number of this order requires following the steps just dis-
cussed. The first step is to find the basic rectangle, as shown in Fig. 11.18(b).
The closest rectangle of order 18 is a rectangle, requiring subdivision
of the basic rectangle as shown in Fig. 11.18(c), where the chain-code direc-
tions are aligned with the resulting grid. The final step is to obtain the chain
code and use its first difference to compute the shape number, as shown in
Fig. 11.18(d). ■

3 * 6

n = 18

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3
0

2
FIGURE 11.18
Steps in the
generation of a
shape number.

a b
c d

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors TD Features References

Shape Number

� It is advisable to normalize the grid orientation by aligning the
chain code grid to the basic rectangle.

11.2 ■ Boundary Descriptors 817

example, if all the rectangles of order 12 (that is, those whose perime-
ter length is 12) are and If the eccentricity of the
rectangle best matches the eccentricity of the basic rectangle for a given
boundary, we establish a grid centered on the basic rectangle and use
the procedure outlined in Section 11.1.2 to obtain the chain code. The shape
number follows from the first difference of this code. Although the order of
the resulting shape number usually equals because of the way the grid spac-
ing was selected, boundaries with depressions comparable to this spacing
sometimes yield shape numbers of order greater than In this case, we spec-
ify a rectangle of order lower than and repeat the procedure until the re-
sulting shape number is of order n.

n
n.

n

2 * 4

2 * 41 * 5.2 * 4, 3 * 3,
n = 12,

EXAMPLE 11.6:
Computing shape
numbers.

■ Suppose that is specified for the boundary in Fig. 11.18(a). To ob-
tain a shape number of this order requires following the steps just dis-
cussed. The first step is to find the basic rectangle, as shown in Fig. 11.18(b).
The closest rectangle of order 18 is a rectangle, requiring subdivision
of the basic rectangle as shown in Fig. 11.18(c), where the chain-code direc-
tions are aligned with the resulting grid. The final step is to obtain the chain
code and use its first difference to compute the shape number, as shown in
Fig. 11.18(d). ■

3 * 6

n = 18

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3
0

2

FIGURE 11.18
Steps in the
generation of a
shape number.

a b
c d

11.2
■

Boundary D
escriptors

817

exam
ple, if

all the rectangles of order 12 (that is, those w
hose perim

e-

ter length is 12) are

and

If the eccentricity of the

rectangle best m
atches the eccentricity of the basic rectangle for a given

boundary, w
e establish a

grid centered on the basic rectangle and use

the procedure outlined in Section 11.1.2
to obtain the chain code. The shape

num
ber follow

s from
 the first difference of this code. A

lthough the order of

the resulting shape num
ber usually equals

because of the w
ay the grid spac-

ing w
as selected, boundaries w

ith depressions com
parable to this spacing

som
etim

es yield shape num
bers of order greater than

In this case, w
e spec-

ify a rectangle of order low
er than

and repeat the procedure until the re-

sulting shape num
ber is of order n. n

n.
n

2
*

4

2
*

4

1
*

5.

2
*

4, 3
*

3,

n
=

12,
E

X
A

M
PLE

 11.6:

C
om

puting shape

num
bers.

■
Suppose that

is specified for the boundary in Fig. 11.18(a). To ob-

tain a shape num
ber of this order requires follow

ing the steps just dis-

cussed. The first step is to find the basic rectangle, as show
n in Fig. 11.18(b).

The closest rectangle of order 18 is a

rectangle, requiring subdivision

of the basic rectangle as show
n in Fig. 11.18(c), w

here the chain-code direc-

tions are aligned w
ith the resulting grid. The final step is to obtain the chain

code and use its first difference to com
pute the shape num

ber, as show
n in

Fig. 11.18(d).

■

3
*

6

n
=

18

C
hain code:

0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

D
ifference:

3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.:
0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3

02

FIGURE
11.18

Steps in the

generation of a

shape num
ber.

a
bc

d

11.2
■

Boundary D
escriptors

817

exam
ple, if

all the rectangles of order 12 (that is, those w
hose perim

e-

ter length is 12) are

and

If the eccentricity of the

rectangle best m
atches the eccentricity of the basic rectangle for a given

boundary, w
e establish a

grid centered on the basic rectangle and use

the procedure outlined in Section 11.1.2
to obtain the chain code. The shape

num
ber follow

s from
 the first difference of this code. A

lthough the order of

the resulting shape num
ber usually equals

because of the w
ay the grid spac-

ing w
as selected, boundaries w

ith depressions com
parable to this spacing

som
etim

es yield shape num
bers of order greater than

In this case, w
e spec-

ify a rectangle of order low
er than

and repeat the procedure until the re-

sulting shape num
ber is of order n. n

n.
n

2
*

4

2
*

4

1
*

5.

2
*

4, 3
*

3,

n
=

12,
E

X
A

M
PLE

 11.6:

C
om

puting shape

num
bers.

■
Suppose that

is specified for the boundary in Fig. 11.18(a). To ob-

tain a shape num
ber of this order requires follow

ing the steps just dis-

cussed. The first step is to find the basic rectangle, as show
n in Fig. 11.18(b).

The closest rectangle of order 18 is a

rectangle, requiring subdivision

of the basic rectangle as show
n in Fig. 11.18(c), w

here the chain-code direc-

tions are aligned w
ith the resulting grid. The final step is to obtain the chain

code and use its first difference to com
pute the shape num

ber, as show
n in

Fig. 11.18(d).

■

3
*

6

n
=

18

C
hain code:

0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

D
ifference:

3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.:
0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3

02

FIGURE
11.18

Steps in the

generation of a

shape num
ber.

a
bc

d

11.2 ■ Boundary Descriptors 817

example, if all the rectangles of order 12 (that is, those whose perime-
ter length is 12) are and If the eccentricity of the
rectangle best matches the eccentricity of the basic rectangle for a given
boundary, we establish a grid centered on the basic rectangle and use
the procedure outlined in Section 11.1.2 to obtain the chain code. The shape
number follows from the first difference of this code. Although the order of
the resulting shape number usually equals because of the way the grid spac-
ing was selected, boundaries with depressions comparable to this spacing
sometimes yield shape numbers of order greater than In this case, we spec-
ify a rectangle of order lower than and repeat the procedure until the re-
sulting shape number is of order n.

n
n.

n

2 * 4

2 * 41 * 5.2 * 4, 3 * 3,
n = 12,

EXAMPLE 11.6:
Computing shape
numbers.

■ Suppose that is specified for the boundary in Fig. 11.18(a). To ob-
tain a shape number of this order requires following the steps just dis-
cussed. The first step is to find the basic rectangle, as shown in Fig. 11.18(b).
The closest rectangle of order 18 is a rectangle, requiring subdivision
of the basic rectangle as shown in Fig. 11.18(c), where the chain-code direc-
tions are aligned with the resulting grid. The final step is to obtain the chain
code and use its first difference to compute the shape number, as shown in
Fig. 11.18(d). ■

3 * 6

n = 18

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3
0

2

FIGURE 11.18
Steps in the
generation of a
shape number.

a b
c d

33/61 Prepared by Dr. Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors TD Features References

Shape Number

� It is advisable to normalize the grid orientation by aligning the
chain code grid to the basic rectangle.

11.2 ■ Boundary Descriptors 817

example, if all the rectangles of order 12 (that is, those whose perime-
ter length is 12) are and If the eccentricity of the
rectangle best matches the eccentricity of the basic rectangle for a given
boundary, we establish a grid centered on the basic rectangle and use
the procedure outlined in Section 11.1.2 to obtain the chain code. The shape
number follows from the first difference of this code. Although the order of
the resulting shape number usually equals because of the way the grid spac-
ing was selected, boundaries with depressions comparable to this spacing
sometimes yield shape numbers of order greater than In this case, we spec-
ify a rectangle of order lower than and repeat the procedure until the re-
sulting shape number is of order n.

n
n.

n

2 * 4

2 * 41 * 5.2 * 4, 3 * 3,
n = 12,

EXAMPLE 11.6:
Computing shape
numbers.

■ Suppose that is specified for the boundary in Fig. 11.18(a). To ob-
tain a shape number of this order requires following the steps just dis-
cussed. The first step is to find the basic rectangle, as shown in Fig. 11.18(b).
The closest rectangle of order 18 is a rectangle, requiring subdivision
of the basic rectangle as shown in Fig. 11.18(c), where the chain-code direc-
tions are aligned with the resulting grid. The final step is to obtain the chain
code and use its first difference to compute the shape number, as shown in
Fig. 11.18(d). ■

3 * 6

n = 18

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3
0

2

FIGURE 11.18
Steps in the
generation of a
shape number.

a b
c d

11.2
■

Boundary D
escriptors

817

exam
ple, if

all the rectangles of order 12 (that is, those w
hose perim

e-

ter length is 12) are

and

If the eccentricity of the

rectangle best m
atches the eccentricity of the basic rectangle for a given

boundary, w
e establish a

grid centered on the basic rectangle and use

the procedure outlined in Section 11.1.2
to obtain the chain code. The shape

num
ber follow

s from
 the first difference of this code. A

lthough the order of

the resulting shape num
ber usually equals

because of the w
ay the grid spac-

ing w
as selected, boundaries w

ith depressions com
parable to this spacing

som
etim

es yield shape num
bers of order greater than

In this case, w
e spec-

ify a rectangle of order low
er than

and repeat the procedure until the re-

sulting shape num
ber is of order n. n

n.
n

2
*

4

2
*

4

1
*

5.

2
*

4, 3
*

3,

n
=

12,
E

X
A

M
PLE

 11.6:

C
om

puting shape

num
bers.

■
Suppose that

is specified for the boundary in Fig. 11.18(a). To ob-

tain a shape num
ber of this order requires follow

ing the steps just dis-

cussed. The first step is to find the basic rectangle, as show
n in Fig. 11.18(b).

The closest rectangle of order 18 is a

rectangle, requiring subdivision

of the basic rectangle as show
n in Fig. 11.18(c), w

here the chain-code direc-

tions are aligned w
ith the resulting grid. The final step is to obtain the chain

code and use its first difference to com
pute the shape num

ber, as show
n in

Fig. 11.18(d).

■

3
*

6

n
=

18

C
hain code:

0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

D
ifference:

3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.:
0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3

02

FIGURE
11.18

Steps in the

generation of a

shape num
ber.

a
bc

d

11.2
■

Boundary D
escriptors

817

exam
ple, if

all the rectangles of order 12 (that is, those w
hose perim

e-

ter length is 12) are

and

If the eccentricity of the

rectangle best m
atches the eccentricity of the basic rectangle for a given

boundary, w
e establish a

grid centered on the basic rectangle and use

the procedure outlined in Section 11.1.2
to obtain the chain code. The shape

num
ber follow

s from
 the first difference of this code. A

lthough the order of

the resulting shape num
ber usually equals

because of the w
ay the grid spac-

ing w
as selected, boundaries w

ith depressions com
parable to this spacing

som
etim

es yield shape num
bers of order greater than

In this case, w
e spec-

ify a rectangle of order low
er than

and repeat the procedure until the re-

sulting shape num
ber is of order n. n

n.
n

2
*

4

2
*

4

1
*

5.

2
*

4, 3
*

3,

n
=

12,
E

X
A

M
PLE

 11.6:

C
om

puting shape

num
bers.

■
Suppose that

is specified for the boundary in Fig. 11.18(a). To ob-

tain a shape num
ber of this order requires follow

ing the steps just dis-

cussed. The first step is to find the basic rectangle, as show
n in Fig. 11.18(b).

The closest rectangle of order 18 is a

rectangle, requiring subdivision

of the basic rectangle as show
n in Fig. 11.18(c), w

here the chain-code direc-

tions are aligned w
ith the resulting grid. The final step is to obtain the chain

code and use its first difference to com
pute the shape num

ber, as show
n in

Fig. 11.18(d).

■

3
*

6

n
=

18

C
hain code:

0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

D
ifference:

3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.:
0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3

02

FIGURE
11.18

Steps in the

generation of a

shape num
ber.

a
bc

d

11.2 ■ Boundary Descriptors 817

example, if all the rectangles of order 12 (that is, those whose perime-
ter length is 12) are and If the eccentricity of the
rectangle best matches the eccentricity of the basic rectangle for a given
boundary, we establish a grid centered on the basic rectangle and use
the procedure outlined in Section 11.1.2 to obtain the chain code. The shape
number follows from the first difference of this code. Although the order of
the resulting shape number usually equals because of the way the grid spac-
ing was selected, boundaries with depressions comparable to this spacing
sometimes yield shape numbers of order greater than In this case, we spec-
ify a rectangle of order lower than and repeat the procedure until the re-
sulting shape number is of order n.

n
n.

n

2 * 4

2 * 41 * 5.2 * 4, 3 * 3,
n = 12,

EXAMPLE 11.6:
Computing shape
numbers.

■ Suppose that is specified for the boundary in Fig. 11.18(a). To ob-
tain a shape number of this order requires following the steps just dis-
cussed. The first step is to find the basic rectangle, as shown in Fig. 11.18(b).
The closest rectangle of order 18 is a rectangle, requiring subdivision
of the basic rectangle as shown in Fig. 11.18(c), where the chain-code direc-
tions are aligned with the resulting grid. The final step is to obtain the chain
code and use its first difference to compute the shape number, as shown in
Fig. 11.18(d). ■

3 * 6

n = 18

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3
0

2

FIGURE 11.18
Steps in the
generation of a
shape number.

a b
c d

33/61 Prepared by Dr. Kundan Kumar Pattern Classification

11.2 ■ Boundary Descriptors 817

example, if all the rectangles of order 12 (that is, those whose perime-
ter length is 12) are and If the eccentricity of the
rectangle best matches the eccentricity of the basic rectangle for a given
boundary, we establish a grid centered on the basic rectangle and use
the procedure outlined in Section 11.1.2 to obtain the chain code. The shape
number follows from the first difference of this code. Although the order of
the resulting shape number usually equals because of the way the grid spac-
ing was selected, boundaries with depressions comparable to this spacing
sometimes yield shape numbers of order greater than In this case, we spec-
ify a rectangle of order lower than and repeat the procedure until the re-
sulting shape number is of order n.

n
n.

n

2 * 4

2 * 41 * 5.2 * 4, 3 * 3,
n = 12,

EXAMPLE 11.6:
Computing shape
numbers.

■ Suppose that is specified for the boundary in Fig. 11.18(a). To ob-
tain a shape number of this order requires following the steps just dis-
cussed. The first step is to find the basic rectangle, as shown in Fig. 11.18(b).
The closest rectangle of order 18 is a rectangle, requiring subdivision
of the basic rectangle as shown in Fig. 11.18(c), where the chain-code direc-
tions are aligned with the resulting grid. The final step is to obtain the chain
code and use its first difference to compute the shape number, as shown in
Fig. 11.18(d). ■

3 * 6

n = 18

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1

Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

1

3
0

2

FIGURE 11.18
Steps in the
generation of a
shape number.

a b
c d

30/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Fourier Descriptors

818 Chapter 11 ■ Representation and Description

jy

x
x0

y0
y1

x1

Real axis

Im
ag

in
ar

y
ax

is

FIGURE 11.19
A digital
boundary and its
representation as
a complex
sequence. The
points and

shown are
(arbitrarily) the
first two points in
the sequence.

(x1, y1)
(x0, y0)

11.2.3 Fourier Descriptors
Figure 11.19 shows a K-point digital boundary in the xy-plane. Starting at
an arbitrary point coordinate pairs

are encountered in traversing the boundary, say, in the counter-
clockwise direction. These coordinates can be expressed in the form
and With this notation, the boundary itself can be represented as the
sequence of coordinates for More-
over, each coordinate pair can be treated as a complex number so that

(11.2-2)

for That is, the x-axis is treated as the real axis and the
y-axis as the imaginary axis of a sequence of complex numbers. Although the
interpretation of the sequence was recast, the nature of the boundary itself
was not changed. Of course, this representation has one great advantage: It re-
duces a 2-D to a 1-D problem.

From Eq. (4.4-6), the discrete Fourier transform (DFT) of is

(11.2-3)

for The complex coefficients are called the
Fourier descriptors of the boundary.The inverse Fourier transform of these co-
efficients restores That is, from Eq. (4.4-7),

(11.2-4)

for Suppose, however, that instead of all the Fourier
coefficients, only the first coefficients are used. This is equivalent to setting

for in Eq. (11.2-4). The result is the following
approximation to

(11.2-5)sN(k) =
1
P a

P - 1

u = 0
a(u)e j2puk>P

s(k):
u 7 P - 1a(u) = 0

P
k = 0, 1, 2, Á , K - 1.

s(k) =
1
K a

K - 1

u = 0
a(u)e j2puk>K

s(k).

a(u)u = 0, 1, 2, Á , K - 1.

a(u) = a
K - 1

k = 0
s(k)e-j2puk>K

s(k)

k = 0, 1, 2, Á , K - 1.

s(k) = x(k) + jy(k)

k = 0, 1, 2, Á , K - 1.s(k) = [x(k), y(k)],
y(k) = yk.

x(k) = xk

(xK - 1, yK - 1)
(x0, y0), (x1, y1), (x2, y2), Á ,(x0, y0),

Figure: A digital boundary and its representation as a complex sequence. The point (x0, y0) and (x1, y1) shown
are (arbitrarily) the first two points in the sequence.

31/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Fourier Descriptors

� Each coordinate pair treat as a complex number

s(k) = x(k) + jy(k)

for k = 0, 1, 2, . . . , N − 1.

� The discrete Fourier transform (DFT) of s(k) is

a(u) =

N−1∑
k=0

s(k)e−j2πuk/N

for u = 0, 1, 2, . . . , N − 1

� a(u) are Fourier Descriptors.

32/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Statistical moments

11.2 ■ Boundary Descriptors 821

†Recall from Chapter 4 that the Fourier transform of a constant is an impulse located at the origin.
Recall also that the impulse is zero everywhere else.

In other words, translation consists of adding a constant displacement to all co-
ordinates in the boundary. Note that translation has no effect on the descrip-
tors, except for which has the impulse † Finally, the expression

means redefining the sequence as

(11.2-8)

which merely changes the starting point of the sequence to from
The last entry in Table 11.1 shows that a change in starting point affects

all descriptors in a different (but known) way, in the sense that the term multi-
plying depends on

11.2.4 Statistical Moments
The shape of boundary segments (and of signature waveforms) can be described
quantitatively by using statistical moments, such as the mean, variance, and higher-
order moments.To see how this can be accomplished, consider Fig. 11.21(a), which
shows the segment of a boundary, and Fig. 11.21(b), which shows the segment
represented as a 1-D function of an arbitrary variable This function is ob-
tained by connecting the two end points of the segment and rotating the line
segment until it is horizontal. The coordinates of the points are rotated by the
same angle.

Let us treat the amplitude of as a discrete random variable and form
an amplitude histogram where is the number
of discrete amplitude increments in which we divide the amplitude scale.
Then, keeping in mind that is an estimate of the probability of value
occurring, it follows from Eq. (3.3-17) that the nth moment of about its
mean is

(11.2-9)

where

(11.2-10)m = a
A - 1

i = 0
vip(vi)

mn(v) = a
A - 1

i = 0
(vi - m)np(vi)

v
vip(vi)

Ap(vi), i = 0, 1, 2, Á , A - 1,
vg

r.g(r)

u.a(u)

k = 0.
k = k0

sp = x(k - k0) + jy(k - k0)

sp(k) = s(k - k0)
d(u).u = 0,

g(r)

r

FIGURE 11.21
(a) Boundary
segment.
(b) Representation
as a 1-D function.

a b

Consult the book Web site
for a brief review of prob-
ability theory.

� Once a boundary is described as a 1-D function, statistical moments (mean,
variance, and a few higher-order central moments) can be used to describe it.

µn(z) =

N−1∑
i=0

(zi −m)np(zi)

m =

N−1∑
i=0

zip(zi)

33/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Regional Features/Descriptors

Liver
parenchyma

External
tissue

External
tissue

Liver
parenchyma

34/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Some simple Descriptors

� The area of a region is defined as the number of pixels in the region.

� The perimeter of a region is the length of its boundary.

� Compactness of a region, defined as (perimeter)2/area, and is minimal for a
disk-shape region.

� A slightly different descriptor of compactness is the circularity ratio, defined as the
ratio of the area of a region to the area of a circle (the most compact shape).

� Region descriptors:
� mean and median of the gray levels,
� minimum and maximum gray-level values, and
� number of pixels with above and below the mean.

35/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Region Features

� There are following region features
� Colors, e.g., RGB values, HSV value, L*a*b
� Intensity, e.g. Gray Values
� Textures

� Further texture is divided into two classes:
� Spatial Domain Features

� Structural Features, e.g., LBP, Wavelets
� Statistical Features, e.g., GLCM, Orientation Histogram

� Transformed Domain Features
� Gabor Filters

36/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Texture

� An important approach to region description is to quantify its texture content.828 Chapter 11 ■ Representation and Description

FIGURE 11.28
The white squares
mark, from left to
right, smooth,
coarse, and
regular textures.
These are optical
microscope
images of a
superconductor,
human
cholesterol, and a
microprocessor.
(Courtesy of Dr.
Michael W.
Davidson, Florida
State University.)

Statistical approaches

One of the simplest approaches for describing texture is to use statistical moments
of the intensity histogram of an image or region. Let be a random variable de-
noting intensity and let be the corresponding his-
togram, where is the number of distinct intensity levels. From Eq. (3.3-17), the
nth moment of about the mean is

(11.3-4)

where is the mean value of (the average intensity):

(11.3-5)

Note from Eq. (11.3-4) that and The second moment [the
variance] is of particular importance in texture description. It is
a measure of intensity contrast that can be used to establish descriptors of rel-
ative smoothness. For example, the measure

(11.3-6)

is 0 for areas of constant intensity (the variance is zero there) and approaches
1 for large values of Because variance values tend to be large for gray-
scale images with values, for example, in the range 0 to 255, it is a good idea to
normalize the variance to the interval [0, 1] for use in Eq. (11.3-6). This is done
simply by dividing by in Eq. (11.3-6). The standard deviation,

also is used frequently as a measure of texture because values of the
standard deviation tend to be more intuitive to many people.
s(z),

(L - 1)2s2(z)

s2(z).

R(z) = 1 -
1

1 + s2(z)

s2(z) = m2(z)
m1 = 0.m0 = 1

m = a
L - 1

i = 0
zip(zi)

zm

mn(z) = a
L - 1

i = 0
(zi - m)np(zi)

z
L

p(zi), i = 0, 1, 2, Á , L - 1,
z

a b c

Figure: The white squares mark, from left to right, smooth, coarse, and regular textures. These are optical
microscope images of a superconductor, human cholesterol, and a microprocessor. (Courtesy of Dr. Michael
W. Davidson, Florida State University.)

37/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Texture: Statistical approaches

� Compute the histogram of the area of interest.
� The nth moment of z about the mean is

µn(z) =

L−1∑
i=0

(zi −m)np(zi) m =

L−1∑
i=0

zip(zi)

� The second moment (n = 2) is of particular importance in texture description. It is
a measure of gray-level contrast that can be used to establish descriptors of relative
smoothness.

� For example, the texture measure, R, is 0 for areas of contrast intensity (the
variance is 0 here) and approaches 1 for large value of σ2(z)

R = 1− 1

1 + σ2(z)

38/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Texture: Statistical approaches
� The third moment

µ3(z) =

L−1∑
i=0

(zi −m)
3
p(zi)

is a measure of the skewness of the histogram while the fourth moment is a measure of its
relatives flatness.

� Some useful additional texture measures bases on histograms include a measure of
“uniformity”, given by

Uniformity =

L−1∑
i=0

p2(zi)

� Average entropy measure

Entropy = −
L−1∑
i=0

p(zi)log2p(zi)

39/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Texture: Statistical approaches

Figure: Texture measures for the subimages shown in previous slide

11.3 ■ Regional Descriptors 829

The third moment,

(11.3-7)

is a measure of the skewness of the histogram while the fourth moment is a
measure of its relative flatness. The fifth and higher moments are not so easily
related to histogram shape, but they do provide further quantitative discrimi-
nation of texture content. Some useful additional texture measures based on
histograms include a measure of “uniformity,” given by

(11.3-8)

and an average entropy measure, which, you will recall from basic information
theory, is defined as

(11.3-9)

Because the ps have values in the range [0, 1] and their sum equals 1, measure
is maximum for an image in which all intensity levels are equal (maximally

uniform), and decreases from there. Entropy is a measure of variability and is
0 for a constant image.

U

e(z) = -a
L - 1

i = 0
p(zi) log2 p(zi)

U(z) = a
L - 1

i = 0
p2(zi)

m3(z) = a
L - 1

i = 0
(zi - m)3p(zi)

EXAMPLE 11.10:
Texture measures
based on
histograms.

■ Table 11.2 summarizes the values of the preceding measures for the three
types of textures highlighted in Fig. 11.28.The mean just tells us the average in-
tensity of each region and is useful only as a rough idea of intensity, not really
texture. The standard deviation is much more informative; the numbers clear-
ly show that the first texture has significantly less variability in intensity levels
(it is smoother) than the other two textures.The coarse texture shows up clear-
ly in this measure. As expected, the same comments hold for because it
measures essentially the same thing as the standard deviation. The third mo-
ment generally is useful for determining the degree of symmetry of histograms
and whether they are skewed to the left (negative value) or the right (positive
value). This gives a rough idea of whether the intensity levels are biased to-
ward the dark or light side of the mean. In terms of texture, the information
derived from the third moment is useful only when variations between mea-
surements are large. Looking at the measure of uniformity, we again conclude

R,

Standard Third
Texture Mean deviation R (normalized) moment Uniformity Entropy

Smooth 82.64 11.79 0.002 0.026 5.434
Coarse 143.56 74.63 0.079 0.005 7.783
Regular 99.72 33.73 0.017 0.750 0.013 6.674

-0.151
-0.105

TABLE 11.2
Texture measures
for the subimages
shown in Fig. 11.28.

40/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Image Histograms

� The histogram of a digital image with intensity levels in the range [0, L− 1] is a
discrete function

h(rk) = nk (1)

where, rk is the kth intensity value and nk is the number of pixels in the image
with intensity rk

� Normalized histogram

p(rk) =
rk
MN

for k = 0, 1, 2, . . . , L− 1. (2)

� p(rk) is an estimate of the probability of occurrence of intensity level rk in an image.

41/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Compute histogram

Compute the histogram of the given image. First find out the number graylevels in the
image (how many bit image?).

1 0 2 4 5 3 1

9 1 1 4 7 2 1

10 3 7 3 5 3 3

11 2 3 3 3 2 1

7 5 6 6 7 6 1

1 4 1 1 4 9 1

2 8 1 1 5 1 1

0 0 0 1 2

1 1 0 1 1

2 2 1 0 0

1 1 0 2 0

0 0 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2

4

6

8

10

12

14

16

42/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Texture: Gray level co-occurrence matrix (GLCM)

� Gray Level Co-occurance Matrix: Gl,θ(i, j)
where i = 0, 1, 2, . . . , L− 1, j = 0, 1, 2, . . . , L− 1, L is maximum intensity level.

830 Chapter 11 ■ Representation and Description

1 1 7 5 3 2

5 1 6 1 2 5

8 8 6 8 1 2

4 3 4 5 5 1

8 7 8 7 6 2

7 8 6 2 6 2

0 1 1 0 0

1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 0 0 1

0 1 1

0 0

0 0 1 1 02 0

4 5 6 7 81 2 3

1 0

0 1

0 1

3 0

0 0 0 2

0 0 2

0

1

0

0

2

1

0

1

2

1

3

4

5

6

7

8 0 0 2 1

Image f Co-occurrence matrix G

FIGURE 11.29
How to generate
a co-occurrence
matrix.

that the first subimage is smoother (more uniform than the rest) and that the
most random (lowest uniformity) corresponds to the coarse texture.This is not
surprising. Finally, the entropy values are in the opposite order and thus lead
us to the same conclusions as the uniformity measure did. The first subimage
has the lowest variation in intensity levels and the coarse image the most. The
regular texture is in between the two extremes with respect to both these
measures. ■

Measures of texture computed using only histograms carry no informa-
tion regarding the relative position of pixels with respect to each other. This
is important when describing texture, and one way to incorporate this type
of information into the texture-analysis process is to consider not only the
distribution of intensities, but also the relative positions of pixels in an
image.

Let be an operator that defines the position of two pixels relative to
each other, and consider an image, with possible intensity levels. Let G
be a matrix whose element is the number of times that pixel pairs with
intensities and occur in in the position specified by where

A matrix formed in this manner is referred to as a gray-level
(or intensity) co-occurrence matrix. When the meaning is clear, G is referred
to simply as a co-occurrence matrix.

Figure 11.29 shows an example of how to construct a co-occurrence matrix
using and a position operator defined as “one pixel immediately to
the right” (i.e., the neighbor of a pixel is defined as the pixel immediately to
its right). The array on the left is a small image under consideration and the
array on the right is matrix G. We see that element (1, 1) of G is 1, because
there is only one occurrence in of a pixel valued 1 having a pixel valued 1
immediately to its right. Similarly, element (6, 2) of G is 3, because there are
three occurrences in of a pixel with a value of 6 having a pixel valued 2 im-
mediately to its right. The other elements of G are computed in this manner.
If we had defined as, say, “one pixel to the right and one pixel above,” thenQ

f

f

QL = 8

1 … i, j … L.
Q,fzjzi

gij

Lf,
Q

Note that we are using
the intensity range
instead of our usual

This is done
so that intensity values
will correspond with
“traditional” matrix in-
dexing (i.e., intensity
value 1 corresponds to
the first row and column
indices of G).

[0, L - 1].

[1, L]

� Above calculation is just for demonstration. For real images, GLCM matrix dimension is

L× L, where index varies as i = 0, 1, 2, . . . , L− 1, j = 0, 1, 2, . . . , L− 1.

43/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

GLCM Features

� Maximum probability: Measure of the strongest response of G. The range of value is [0, 1].

Maximum probability = max
i,j

pij

� Contrast: A measure of intensity contrast between a pixel and its neighbor over the entire image.
The range of values is 0 (When G is constant) to (L− 1)2.

Contrast =

L−1∑
i=0

L−1∑
j=0

(i− j)2pij

� Inverse Element Difference Moment: A measure of intensity contrast between a pixel and its
neighbor.

L−1∑
i=0

L−1∑
j=0

pij

(i− j)k
for i 6= j

44/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

GLCM Features

� Uniformity/Energy: A measure of how intensities are uniformly distributed.

Uniformity =

L−1∑
i=0

L−1∑
j=0

pij
2

� Homogeneity: Measures the spatial closeness of the distribution of elements in G to the diagonal.
The range of values is [0,1], with the maximum being achieved when G is a diagonal matrix.

Homogeneity =

L−1∑
i=0

L−1∑
j=0

pij
1 + |i− j|

also defined as

Homogeneity =

L−1∑
i=0

L−1∑
j=0

pij

1 + (i− j)2

45/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

GLCM Features

� Entropy: Measures the randomness of the elements of G. The entropy is 0 when all pij ’s are 0 and
is maximum when all pij ’s are equal. The maximum value is 2 log2 L.

Entropy = −
L−1∑
i=0

L−1∑
j=0

pij log2pij

� Correlation: A measure of how correlated a pixel is to its neighbor over the entire image. Range of
values is 1 to −1.

Correlation =

L−1∑
i=0

L−1∑
j=0

(i−mr)(j −mc)pij
σrσc

mr =

L−1∑
i=0

i

L−1∑
j=0

pij mr =

L−1∑
j=0

j

L−1∑
i=0

pij

σ2
r =

L−1∑
i=0

(i−mr)
2
L−1∑
j=0

pij σ2
c =

L−1∑
j=0

(j −mc)
2
L−1∑
i=0

pij

46/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

GLCM feature Visualization

Original Image 2.5 5.0 7.5 10.0 12.5 15.0
GLCM Dissimilarity

0.0

0.1

0.2

0.3

0.4

0.5

G
LC

M
 C

or
re

la
tio

n

Grass
Sky

Original Image 2.5 5.0 7.5 10.0 12.5 15.0
GLCM Dissimilarity

0.0

0.1

0.2

0.3

0.4

0.5

G
LC

M
 C

or
re

la
tio

n

Grass
Sky

47/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Local Binary Pattern
� Basic Local Binary Pattern is governed by

bk =

{
1 if gk > g(x)
0 otherwise and LBPri(x) = min {Pj}

where Pj is decimal equivalent of binary sequence bj .

1 1 1 1 1 1 0 1

1 1 1 1 1 0 1 1

1 1 1 1 0 1 1 1

1 1 1 0 1 1 1 1

1 1 0 1 1 1 1 1

1 0 1 1 1 1 1 1

ܾ ൌ ൜ͳ ݂݅�݃ ݃ ܠ
Ͳ ݁ݏ݅ݓݎ݄݁ݐ

ܲ=254

ଵܲ=253

ଶܲ=251

ଷܲ=247

ସܲ=239

ହܲ=223

ܲ=191

ܲ=127

ܤܮ ܲ ܠ ൌ ݉݅݊ ܲ

1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 1

10 12 9
6 7 19
7 10 16

6 10 12
7 7 9
10 16 19

LBPam•FMqfMBdswod
GEEZERS

48/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Local Binary Pattern: Example

5 4 2 2 1

3 3

2 2

4 7

1 4 4 2 6

5 8 1

5 1

3 7 2

1 1 0 0 0 01 1

2
7

2
6

2
2

2
0
= 197

11 0 0 0 01 1

2
7

2
3

2
1

2
0
= 139

1 10 0 0 01 1

2
4

2
2

2
1

2
0

= 23

2
7

2
1

= 226

1 1 0 0 0 011

2
6

2
5

4

23
?

Can you compute LBP at the position (?)?

49/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

Local Binary Pattern: Example

0 5 10 15 20
0

5000

10000

15000

20000

25000

50/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

References

[1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.

[2] Gonzalez, R. C., Woods, R. E., & Masters, B. R. (2009). Digital image processing.

51/52 Kundan Kumar Pattern Classification

Feature Extraction Boundary Representation Boundary Descriptors Regional Descriptors References

	Feature Extraction
	Boundary Representation
	Boundary Descriptors
	Regional Descriptors
	References

