Boundary Descriptors

Regional Descriptors

References 00

Pattern Classification EET3053 Lecture 02: Feature Extraction

Dr. Kundan Kumar Associate Professor

Department of ECE

Faculty of Engineering (ITER) S'O'A Deemed to be University, Bhubaneswar, India-751030 © 2021 Kundan Kumar, All Rights Reserved

Feature Extraction ●00000	Boundary Representation	Boundary Descriptors 0000000	Regional Descriptors	Refere 00

Feature Extraction 0●0000	Boundary Representation	Boundary Descriptors 0000000	Regional Descriptors	References 00
Topics to be o	covered			

- Boundary Representation
 - □ Boundary (Border) following
 - □ Chain codes
 - Polynomial Approximation
 - Signatures
 - Boundary Segments
 - Skeletons
- Boundary Descriptors
 - Some Simple Descriptors
 - Shape Numbers
 - □ Fourier Descriptors
 - Statistical Moments
- Regional Descriptors
 - □ Texture: Moment Invariants
 - □ Texture: GLCM, LBP

Kundan Kumar

Feature Extraction 00●000	Boundary Representation	Boundary Descriptors	Regional Descript

Good features and Bad features

- Extract features which are good for classification.
- Good features:
 - $\hfill\square$ Objects from the same class have similar feature values
 - Objects from different classes have different values.
- Bad Features: features simply do not contain the information needed to separate the classes, doesn't matter how much effort you put into designing the classifier.

"Bad" features

References

- In general, we use labeled features for supervised learning.
- The mapping from pattern to features that is unique whereas mapping from feature vector to pattern is not immediate.
- So, many patterns may be matched to the same feature of vector.
- In pattern recognition, we never talk about a single pattern. We always talk about feature vector.

Feature Extraction	Boundary Representation	Boundary Descriptors	Regional Descriptors	Ref
00000●		0000000	0000000000000000	00

Nature of separating plane?

- For 2 dimensional feature space line
- For 3 dimensional feature space plane
- For more than 3 dimensional feature space hyperplane

Boundary Representation

Boundary Descriptors

Regional Descriptors

References

Boundary Representation

7/52

Kundan Kumar

Pattern Classification

Boundary Representation

Boundary Descriptors

Regional Descriptors

References 00

Binary Images

Figure: Binary Images

Kundan Kumar

Boundary (Border) algorithm

- Assume a binary image in which object and background points are labeled 1 and 0, respectively.
- Assume images are padded with the border of 0's to avoid object merging with the image border

Boundary algorithm (Moore boundary tracking algorithm)

- 1. Let the starting point, b_0 be the *uppermost, leftmost* point in the image that is labeled 1. Denote by c_0 the west neighbor of b_0 . Clearly, c_0 always is a background point. Examine the 8-neighbors of b_0 , starting at c_0 and proceeding in a clockwise direction. Let b_1 denote the *first* neighbor encountered whose value is 1, and let c_1 be the (back-ground) point immediately preceding b_1 in the sequence. Store the locations of b_0 and b_1 for use in Step 5.
- 2. Let $b = b_1$ and $c = c_1$.
- 3. Let the 8-neighbors of b, starting at c and proceeding in a clockwise direction, be denoted by n_1, n_2, \ldots, n_8 . Find the first n_k labeled 1.
- 4. Let $b = n_k$ and $c = n_{k-1}$
- 5. Repeat Step 3 and 4 until $b = b_0$ and the next boundary point found in b_1 . The sequence of b points found when the algorithm stops constitutes the set of ordered boundary points.

Boundary Representation

Boundary Descriptors

Regional Descriptors

References 00

Boundary algorithm - stopping criterion

							Г		٦							
		1					c_0	b_0	Ţ						c-	
	1		1				1		1				1	≜	b	
	1						1						1			
1		1				1		1				1		1		
1	1	1				1	1	1				1	1	1		

Figure: Illustration of an erroneous result when the stopping rule is such that boundary-following stops when the starting point, b_0 , is encountered again

Boundary representation: Chain Codes

- In order to represent a boundary, it is useful to compact the raw data (list of boundary pixels)
- Chain codes: list of segments with defined length and direction
 - 4-directional chain codes
 - B-directional chain codes

Figure: Direction numbers for (a) 4-directional chain code, and (b) 8-directional chain code

Boundary Descriptors

Boundary representation: Chain Codes

- It may be useful to downsample the data before computing the chain code
 - $\hfill\square$ to reduce the code dimension
 - to remove small detail along the boundary

Figure: (a) Digital boundary with resampling grid superimposed, (b) Result of resampling, (c) 8-directional chain-coded boundary.

Can you draw 4-directional chain-coded boundary?

Boundary Representation

Boundary Descriptors

Regional Descriptors

References 00

Boundary representation: Chain Codes

Boundary representation: Differential Chain Code

- The chain code of a boundary depends on the starting point.
 - □ normalize with respect to the starting point (circular sequence)
 - the new starting point is the one who gives a sequence of numbers giving the smallest/largest integer.
- Normalize with respect to rotation:
 - First difference can be used
 - \square E.g., $10103322 \Rightarrow 3133030$ (counting CCW) and adding the last transition (circular sequence: $2 \Rightarrow 1$)
 - \Rightarrow 31330303 (Differential Chain Code)
 - \Rightarrow 03033133 (Independent of starting point, i.e., rotation invariant)

Boundary Representation

Boundary Descriptors

Regional Descriptors

References 00

Differential Chain Code

Can you write the Differential Chain Code?

- Chain code: 0766666453321212
- Differential chain code: 7700006160771716
- Differential chain code (rotation invariant): 0000616077171677

Boundary Representation

Boundary Descriptors

Regional Descriptors

References

Differential Chain Code: Validation

Can you write the Differential Chain Code?

- Chain code: 0707065444442311
- Differential chain code: 7171677000061607
- Differential chain code: 0000616077171677 (validated)
- Is the differential chain code is invariant to rotation at any angle? (HW)

eature Extraction	Boundary Representation	Boundary Descriptors	Regional Descriptors	References 00

Polygonal Approximation

- A digital boundary can be approximated with arbitrary accuracy by a polygon.
- In practice, the goal of polygonal approximation is to capture the "essence" of the boundary shape with the fewest possible polygonal segments.
 - Minimum-perimeter polygon
 - Splitting technique

Figure: (a) An object boundary (black curve). (b) Boundary enclosed by cells (in gray). (c) Minimum-perimeter polygon obtained by allowing the boundary to shrink. The vertices of the polygon are created by the corners of the inner and outer walls of the gray region.

Boundary Representation

Boundary Descriptors

Regional Descriptors

References 00

Polygonal Approximation: Minimum-Perimeter Polygon

Figure: (a) Region (dark gray) resulting from enclosing the original boundary by cells. (b) Convex (white dots) and concave (black dots) vertices obtained by following the boundary of the dark gray region in the counterclockwise direction. (c) Concave vertices (black dots) displaced to their diagonal mirror locations in the outer wall of the bounding region; the convex vertices are not changed. The MPP (black boundary) is superimposed for reference.

Boundary Descriptors

Polygonal Approximation: Splitting Technique

One approach to boundary segment splitting is to subdivide a segment successively into two part until a *specified criterion* is satisfied.

Figure: (a) Original boundary, (b) Boundary divided into segments based on extreme points, (c) Joining of vertices, (d) Resulting polygon

Polygonal Approximation: Splitting Technique

- For a closed boundary, the best starting points usually are two farthest points in the boundary.
- Farthest point can be obtained by *Karhunen-Loeve transform (KLT)*.
- The maximum perpendicular distance from a boundary segment to the line joining its two end points not exceed a preset threshold.
- Splitting procedure with a threshold equal to 0.25 times the length of line *ab*.

Feature Extraction	Boundary Representation	Boundary Descriptors	Regional Descriptors	References 00
~:				

Signatures

- A signature is a 1-D representation of a boundary (which is a 2-D thing): it should be easier to describe.
 - e.g., distance form the centroid vs angle.

Figure: Distance-versus-angle signatures. (a) $r(\theta)$, is constant, (b) the signature consists of repetitions of the pattern $r(\theta) = Asec(\theta)$ for $0 \le \theta \le \pi/4$ and $r(\theta) = Acsc(\theta)$ for $\pi/4 < \theta \le \pi/2$

- Signatures are invariant to translation, but variant to rotation.
- Invariant to rotation: depends on the starting point
 the starting point could be the farthest point from the *centroid*.
- Scaling varies the amplitude of the signature
 - $\hfill\square$ invariance can be obtained by normalizing between 0 and 1, or
 - $\hfill\square$ by dividing by the variance of the signature (does not work on circle)

Boundary Segments

- Decomposing a boundary into segments often is useful.
- Decomposition reduces the boundary's complexity and thus simplifies the description process.
- In this case use of the *convex hull* of the region enclosed by the boundary is a powerful tool for robust decomposition of the boundary.

Feature Extraction 000000	Boundary Representation	Boundary Descriptors	Regional Descriptors	References 00
Boundary	Segments			

- Convex hull H of an arbitrary set S is the smallest convex set containing S.
- The set difference H S is called the *convex deficiency* D of the set S.
- Note that in principle, this scheme is independent of region size and orientation.

Figure: (a) A region, S, and its convex deficiency (shaded). (b) Partitioned boundary.

Feature Extraction	Boundary Representation	Boundary Descriptors 0000000	Regional Descriptors	References 00
CL L				

Skeletonization

- One way to represent a shape is to reduce it to a graph, by obtaining its skeleton via thinning (skeletonization)
- MAT (Medial axis transformation) is composed by all the points which have more than one closest boundary points ("prairie fire concept")

Figure: (a) Medial axes (dashed) of three simple regions,(b) Human leg bone and skeleton of the region

Boundary Features/Descriptors

Simple descriptors

- *length* of a boundary is one of its simplest descriptors.
 - $\hfill\square$ The number of pixels along a boundary gives a rough approximation of its length.
 - □ For a chain coded curve with unit spacing:

 $length = Horizontal + Vertical + \sqrt{2} \times Diagonal$

• *diameter* (length of the major axis)

$$Diam(B) = \max_{i,j} \left[D(p_i, p_j) \right]$$

The *minor axis* of a boundary is defined as the line perpendicular to the *major axis*. *Basic rectangle* (formed by the major and the minor axis; encloses the boundary) and its

$$eccentricity = \frac{major \ axis}{minor \ axis}$$

Feature Extraction 000000	Boundary Representation	Boundary Descriptors	Regional Descriptors	References 00

Shape Number

- Shape number: the first difference as smallest magnitude (treating the chain code as a circular sequence)
- Order of a shape: the number of digits in Shape number.

Feature Extraction 000000	Boundary Representation	Boundary Descriptors	Regional Descriptors 0000000000000000	References 00

Shape Number

It is advisable to normalize the grid orientation by aligning the chain code grid to the basic rectangle.

Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 1 2 1 1

Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3

Feature Extraction	Boundary Representation	Boundary Descriptors	Regional Descriptors	References
000000	000000000000000000000000000000000000000	0000000	000000000000000000000000000000000000000	00
Fourier Desc	rintors			

Figure: A digital boundary and its representation as a complex sequence. The point (x_0, y_0) and (x_1, y_1) shown are (arbitrarily) the first two points in the sequence.

Feature Extraction	Boundary Representation	Boundary Descriptors	Regional Descriptors 0000000000000000	References 00
Fourier Descr	iptors			

Each coordinate pair treat as a complex number

$$\left(s(k) = x(k) + jy(k)\right)$$

for $k = 0, 1, 2, \dots, N - 1$.

• The discrete Fourier transform (DFT) of s(k) is

$$a(u) = \sum_{k=0}^{N-1} s(k) e^{-j2\pi u k/N}$$

for $u = 0, 1, 2, \dots, N - 1$

• a(u) are Fourier Descriptors.

Once a boundary is described as a 1-D function, statistical moments (mean, variance, and a few higher-order central moments) can be used to describe it.

$$\mu_n(z) = \sum_{i=0}^{N-1} (z_i - m)^n p(z_i)$$

$$m = \sum_{i=0}^{N-1} z_i p(z_i)$$

Boundary Representation

Boundary Descriptors

Regional Descriptors

References 00

Regional Features/Descriptors

Some simple Descriptors

- The *area of a region* is defined as the number of pixels in the region.
- The *perimeter of a region* is the length of its boundary.
- Compactness of a region, defined as (perimeter)²/area, and is minimal for a disk-shape region.
- A slightly different descriptor of compactness is the *circularity ratio*, defined as the ratio of the area of a region to the area of a circle (the most compact shape).
- Region descriptors:
 - $\hfill\square$ mean and median of the gray levels,
 - □ minimum and maximum gray-level values, and
 - □ number of pixels with above and below the mean.

Region Features

- There are following region features
 - □ Colors, e.g., RGB values, HSV value, L*a*b
 - $\hfill\square$ Intensity, e.g. Gray Values
 - Textures
- Further texture is divided into two classes:
 - □ Spatial Domain Features
 - Structural Features, e.g., LBP, Wavelets
 - Statistical Features, e.g., GLCM, Orientation Histogram
 - Transformed Domain Features
 - Gabor Filters

Feature Extraction	Boundary Representation	Boundary Descriptors 0000000	Regional Descriptors	Ref 00
Texture				

• An important approach to region description is to quantify its texture content.

Figure: The white squares mark, from left to right, smooth, coarse, and regular textures. These are optical microscope images of a superconductor, human cholesterol, and a microprocessor. (Courtesy of Dr. Michael W. Davidson, Florida State University.)

Boundary Descriptors

Texture: Statistical approaches

- Compute the *histogram* of the *area of interest*.
- The n^{th} moment of z about the mean is

- The second moment (n = 2) is of particular importance in texture description. It is a measure of gray-level contrast that can be used to establish descriptors of relative smoothness.
- For example, the texture measure, R, is 0 for areas of contrast intensity (the variance is 0 here) and approaches 1 for large value of $\sigma^2(z)$

$$R = 1 - \frac{1}{1 + \sigma^2(z)}$$

Texture: Statistical approaches

The third moment

$$\mu_3(z) = \sum_{i=0}^{L-1} (z_i - m)^3 p(z_i)$$

is a measure of the *skewness* of the histogram while the *fourth moment* is a measure of its relatives flatness.

 Some useful additional texture measures bases on histograms include a measure of "uniformity", given by

Uniformity =
$$\sum_{i=0}^{L-1} p^2(z_i)$$

Average entropy measure

Entropy =
$$-\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i)$$

39/52

Texture: Statistical approaches

Figure: Texture measures for the subimages shown in previous slide

Texture	Mean	Standard deviation	R (normalized)	Third moment	Uniformity	Entropy
Smooth	82.64	11.79	0.002	$-0.105 \\ -0.151 \\ 0.750$	0.026	5.434
Coarse	143.56	74.63	0.079		0.005	7.783
Regular	99.72	33.73	0.017		0.013	6.674

Feature Extraction 000000	Boundary Representation	Boundary Descriptors 0000000	Regional Descriptors	References 00
Image Histog	rams			

• The histogram of a digital image with intensity levels in the range [0, L - 1] is a discrete function

$$h(r_k) = n_k \tag{1}$$

where, r_k is the $k{\rm th}$ intensity value and n_k is the number of pixels in the image with intensity r_k

Normalized histogram

$$p(r_k) = \frac{r_k}{MN}$$
 for $k = 0, 1, 2, \dots, L-1.$ (2)

• $p(r_k)$ is an estimate of the probability of occurrence of intensity level r_k in an image.

Feature Extraction 000000	Boundary Representation	Boundary Descriptors 0000000	Regional Descriptors	References 00
Compute his	stogram			

Compute the histogram of the given image. First find out the number graylevels in the image (how many bit image?).

Б

Texture: Gray level co-occurrence matrix (GLCM)

Gray Level Co-occurance Matrix: $G_{l,\theta}(i, j)$ where i = 0, 1, 2, ..., L - 1, j = 0, 1, 2, ..., L - 1, L is maximum intensity level.

Above calculation is just for demonstration. For real images, GLCM matrix dimension is $L \times L$, where index varies as i = 0, 1, 2, ..., L - 1, j = 0, 1, 2, ..., L - 1.

References

Feature Extraction	Boundary Representation	Boundary Descriptors 0000000	Regional Descriptors 000000000000000000000000000000000000	References 00
GLCM Featu	res			

• Maximum probability: Measure of the strongest response of G. The range of value is [0, 1].

Maximum probability = $\max_{i,j} p_{ij}$

Contrast: A measure of intensity contrast between a pixel and its neighbor over the entire image. The range of values is 0 (When G is constant) to $(L-1)^2$.

Contrast =
$$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} (i-j)^2 p_{ij}$$

Inverse Element Difference Moment: A measure of intensity contrast between a pixel and its neighbor.

$$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{p_{ij}}{(i-j)^k} \quad \text{for } i \neq j$$

Feature Extraction	Boundary Representation	Boundary Descriptors	Regional Descriptors 0000000000000000000	References 00
GLCM Featu	res			

• Uniformity/Energy: A measure of how intensities are uniformly distributed.

Uniformity =
$$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} p_{ij}^{2}$$

Homogeneity: Measures the spatial closeness of the distribution of elements in G to the diagonal. The range of values is [0,1], with the maximum being achieved when G is a diagonal matrix.

Homogeneity =
$$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{p_{ij}}{1+|i-j|}$$

also defined as

Homogeneity =
$$\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{p_{ij}}{1 + (i-j)^2}$$

Feature Extraction	Boundary Representation	Boundary Descriptors	Regional Descriptors	References
000000		0000000	000000000000000000	00

GLCM Features

Entropy: Measures the randomness of the elements of G. The entropy is 0 when all p_{ij} 's are 0 and is maximum when all p_{ij} 's are equal. The maximum value is $2 \log_2 L$.

Entropy =
$$-\sum_{i=0}^{L-1} \sum_{j=0}^{L-1} p_{ij} \log_2 p_{ij}$$

■ *Correlation*: A measure of how correlated a pixel is to its neighbor over the entire image. Range of values is 1 to −1.

$$Correlation = \sum_{i=0}^{L-1} \sum_{j=0}^{L-1} \frac{(i-m_r)(j-m_c)p_{ij}}{\sigma_r \sigma_c}$$
$$m_r = \sum_{i=0}^{L-1} i \sum_{j=0}^{L-1} p_{ij} \qquad m_r = \sum_{j=0}^{L-1} j \sum_{i=0}^{L-1} p_{ij}$$
$$\sigma_r^2 = \sum_{i=0}^{L-1} (i-m_r)^2 \sum_{j=0}^{L-1} p_{ij} \qquad \sigma_c^2 = \sum_{j=0}^{L-1} (j-m_c)^2 \sum_{i=0}^{L-1} p_{ij}$$

Boundary Representation

Boundary Descriptors

Regional Descriptors

References 00

GLCM feature Visualization

47/52

Kundan Kumar

Pattern Classification

Feature Extraction 000000	Boundary Representation	Boundary Descriptors	Regional Descriptors	References 00
Local Binary	Pattern			

Basic Local Binary Pattern is governed by

$$b_k = \left\{ \begin{array}{cc} 1 & \text{if } g_k \geqslant g(x) \\ 0 & \text{otherwise} \end{array} \right\} \quad \text{and} \quad \left[LBP_{ri}(x) = \min\left\{ P_j \right\} \right]$$

where P_j is decimal equivalent of binary sequence b_j .

Boundary Representation

Boundary Descriptors

Regional Descriptors

References

Local Binary Pattern: Example

Can you compute LBP at the position (?)?

Boundary Representation

Boundary Descriptors

Regional Descriptors

References 00

Local Binary Pattern: Example

50/52

Kundan Kumar

Feature Extraction	Boundary Representation	Boundary Descriptors	Regional Descriptors	References ●0
References				

- [1] Hart, P. E., Stork, D. G., & Duda, R. O. (2000). Pattern classification. Hoboken: Wiley.
- [2] Gonzalez, R. C., Woods, R. E., & Masters, B. R. (2009). Digital image processing.

Boundary Representation

Boundary Descriptors

Thank you!