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Topics to be covered

® Boundary Representation

O Boundary (Border) following
Chain codes

Polynomial Approximation
Signatures

Boundary Segments
Skeletons
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® Boundary Descriptors

0 Some Simple Descriptors
0 Shape Numbers

O Fourier Descriptors

O Statistical Moments

® Regional Descriptors

O Texture: Moment Invariants
O Texture: GLCM, LBP
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Good features and Bad features

m Extract features which are good for classification.
® Good features:
0 Objects from the same class have similar feature values
0 Objects from different classes have different values.
m Bad Features: features simply do not contain the information needed to separate
the classes, doesn’t matter how much effort you put into designing the classifier.
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Feature separability
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Labeled features
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® |n general, we use labeled features for supervised learning.
® The mapping from pattern to features that is unique whereas mapping from feature

vector to pattern is not immediate.

So, many patterns may be matched to the same feature of vector.

In pattern recognition, we never talk about a single pattern. We always talk about
feature vector.
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Nature of separating plane?

m For 2 dimensional feature space — line
® For 3 dimensional feature space — plane
® For more than 3 dimensional feature space — hyperplane
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Binary Images
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Figure: Binary Images
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Boundary (Border) algorithm

® Assume a binary image in which object and background points are labeled 1 and 0,
respectively.

® Assume images are padded with the border of 0's to avoid object merging with the
image border
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Boundary algorithm (Moore boundary tracking algorithm)

1. Let the starting point, bo be the uppermost, leftmost point in the image that is labeled 1. Denote
by co the west neighbor of by. Clearly, ¢y always is a background point. Examine the 8-neighbors
of bg, starting at co and proceeding in a clockwise direction. Let b1 denote the first neighbor
encountered whose value is 1, and let ¢; be the (back-ground) point immediately preceding b1 in
the sequence. Store the locations of by and by for use in Step 5.

2. Letb="b1 and ¢ = c1.

3. Let the 8-neighbors of b, starting at ¢ and proceeding in a clockwise direction, be denoted by
ni,na,...,ng. Find the first ny labeled 1.

4. Letb=mng and c = ng_1

5. Repeat Step 3 and 4 until b = by and the next boundary point found in b1. The sequence of b
points found when the algorithm stops constitutes the set of ordered boundary points.
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Boundary algorithm - stopping criterion
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Figure: lllustration of an erroneous result when the stopping rule is such that boundary-following stops when the
starting point, bo, is encountered again
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Boundary representation: Chain Codes

® |n order to represent a boundary, it is useful to compact the raw data (list of
boundary pixels)
® Chain codes: list of segments with defined length and direction
0 4-directional chain codes
0 8-directional chain codes

BN
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Figure: Direction numbers for (a) 4-directional chain code, and (b) 8-directional chain code
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Boundary representation: Chain Codes

® |t may be useful to downsample the data before computing the chain code
0 to reduce the code dimension
O to remove small detail along the boundary

b
vl \\
2t j6 5 7
L Te ‘
o] Te
N e
A

Figure: (a) Digital boundary with resampling grid superimposed, (b) Result of resampling, (c) 8-directional
chain-coded boundary.

® Can you draw 4-directional chain-coded boundary?
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Boundary representation: Chain Codes

1
‘ Chain code: 0033333323221211101101
3
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Boundary representation: Differential Chain Code

® The chain code of a boundary depends on the starting point.
O normalize with respect to the starting point (circular sequence)
O the new starting point is the one who gives a sequence of numbers giving the
smallest/largest integer.
® Normalize with respect to rotation:
0 First difference can be used
o E.g., 10103322 = 3133030 (counting CCW) and adding the last transition (circular
sequence: 2 = 1)
= 31330303 (Differential Chain Code)
= 03033133 (Independent of starting point, i.e., rotation invariant)
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Differential Chain Code
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Can you write the Differential Chain Code?

® Chain code: 0766666453321212

= Differential chain code: 7700006160771716

m Differential chain code (rotation invariant): 0000616077171677
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Differential Chain Code: Validation

Can you write the Differential Chain Code?

® Chain code: 0707065444442311
Differential chain code: 7171677000061607
Differential chain code: 0000616077171677 (validated)

Is the differential chain code is invariant to rotation at any angle? (HW)
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Polygonal Approximation

® A digital boundary can be approximated with arbitrary accuracy by a polygon.
B |n practice, the goal of polygonal approximation is to capture the “essence” of the boundary
shape with the
0 Minimum-perimeter polygon
0 Splitting technique
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Figure: (a) An object boundary (black curve). (b) Boundary enclosed by cells (in gray). (c) Minimum-perimeter
polygon obtained by allowing the boundary to shrink. The vertices of the polygon are created by the corners of
the inner and outer walls of the gray region.
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Polygonal Approximation: Minimum-Perimeter Polygon

Figure: (a) Region (dark gray) resulting from enclosing the original boundary by cells. (b) Convex (white dots)
and concave (black dots) vertices obtained by following the boundary of the dark gray region in the
counterclockwise direction. (c) Concave vertices (black dots) displaced to their diagonal mirror locations in the
outer wall of the bounding region; the convex vertices are not changed. The MPP (black boundary) is
superimposed for reference.
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Polygonal Approximation: Splitting Technique

® One approach to boundary segment splitting is to subdivide a segment successively
into two part until a specified criterion is satisfied.

Figure: (a) Original boundary, (b) Boundary divided into segments based on extreme points, (c) Joining of
vertices, (d) Resulting polygon
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Polygonal Approximation: Splitting Technique

For a closed boundary, the best starting points usually are two farthest points in the
boundary.

Farthest point can be obtained by Karhunen-Loeve transform (KLT).

The maximum perpendicular distance from a boundary segment to the line joining
its two end points not exceed a preset threshold.

Splitting procedure with a threshold equal to 0.25 times the length of line ab.
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Signatures

m A signature is a 1-D representation of a boundary (which is a 2-D thing): it should
be easier to describe.
e.g., distance form the centroid vs angle.
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Figure: Distance-versus-angle signatures. (a) r(0), is constant, (b) the signature consists of repetitions of
the pattern 7(0) = Asec(0) for 0 < 6 < 7/4 and r(0) = Acsc(0) for m/4 < 0 < 7/2
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Signatures

® Signatures are invariant to translation, but variant to rotation.

® |nvariant to rotation: depends on the starting point
O the starting point could be the farthest point from the centroid.

® Scaling varies the amplitude of the signature

0 invariance can be obtained by normalizing between 0 and 1, or
O by dividing by the variance of the signature (does not work on circle)
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Boundary Segments

® Decomposing a boundary into segments often is useful.
® Decomposition reduces the boundary’s complexity and thus simplifies the
description process.

® |n this case use of the convex hull of the region enclosed by the boundary is a
powerful tool for robust decomposition of the boundary.
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Boundary Segments

m Convex hull H of an arbitrary set .S is the smallest convex set containing 5.
® The set difference H — S is called the convex deficiency D of the set S.

m Note that in principle, this scheme is independent of region size and orientation.

Figure: (a) A region, S, and its convex deficiency (shaded). (b) Partitioned boundary.
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Skeletonization

= One way to represent a shape is to reduce it to a graph, by obtaining its skeleton
via thinning (skeletonization)

m MAT (Medial axis transformation) is composed by all the points which have more
than one closest boundary points (“prairie fire concept”)

Figure: (a) Medial axes (dashed) of three simple regions,(b) Human leg bone and skeleton of the region
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Boundary Features/Descriptors
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Simple descriptors

® /ength of a boundary is one of its simplest descriptors.
0 The number of pixels along a boundary gives a rough approximation of its length.
0 For a chain coded curve with unit spacing:

{/ength = Horizontal 4 Vertical + v/2 x Diagonal}

® diameter (length of the major axis)

[Diam(B) = max [D(pi,pj)]}

® The minor axis of a boundary is defined as the line perpendicular to the major axis.
m Basic rectangle (formed by the major and the minor axis; encloses the boundary)
and its

major axis}

eccentricity = — -
minor axis
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Shape Number

® Shape number: the first difference as smallest magnitude (treating the chain code
as a circular sequence)

® Order of a shape: the number of digits in Shape number.

Order 4 Order 6
D Ej
Chain code: 0 3 2 1 003221
Difference: 3 3 3 3 303303
Shapeno.: 3 3 3 3 033033
Order 8
- .

Chaincode: 0 0332211 03032211 00032221

Difference: 3 0303030 33133030 30033003

Shapeno: 03030303 03033133 00330033
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Shape Number

® |t is advisable to normalize the grid orientation by aligning the chain code grid to
the basic rectangle.

A\
/
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Chaincode: 0 0 003 0032232221211

Difference: 3 0 003 1033013003130

Shapeno: 0 0 031 0330130031303
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Fourier Descriptors
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Figure: A digital boundary and its representation as a complex sequence. The point (zo,yo) and (z1,y1) shown
are (arbitrarily) the first two points in the sequence.
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Fourier Descriptors

® Each coordinate pair treat as a complex number

(s(k) = (k) + jy(k)

for k=0,1,2,...,N — 1.
® The discrete Fourier transform (DFT) of s(k) is

N_ .
a(u) = s(k:)e*ﬂ”“k/N
k=0

fary

foru=0,1,2,...,N—1

® a(u) are Fourier Descriptors.
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Statistical moments
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® Once a boundary is described as a 1-D function, statistical moments (mean,
variance, and a few higher-order central moments) can be used to describe it
N-1

pn(2) = Y (2 —m)"p(z)

zip(2;)
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Regional Features/Descriptors
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Some simple Descriptors

The area of a region is defined as the number of pixels in the region.

The perimeter of a region is the length of its boundary.

m Compactness of a region, defined as (perimeter)? /area, and is minimal for a
disk-shape region.

A slightly different descriptor of compactness is the circularity ratio, defined as the
ratio of the area of a region to the area of a circle (the most compact shape).

Region descriptors:

0 mean and median of the gray levels,

O minimum and maximum gray-level values, and

O number of pixels with above and below the mean.
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Region Features

® There are following region features
0 Colors, e.g., RGB values, HSV value, L*a*b
O Intensity, e.g. Gray Values
O Textures

®m Further texture is divided into two classes:
0 Spatial Domain Features

B Structural Features, e.g., LBP, Wavelets
B Statistical Features, e.g., GLCM, Orientation Histogram

O Transformed Domain Features
B Gabor Filters
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Texture

= An important approach to region description is to quantify its texture content.

Figure: The white squares mark, from left to right, smooth, coarse, and regular textures. These are optical
microscope images of a superconductor, human cholesterol, and a microprocessor. (Courtesy of Dr. Michael
W. Davidson, Florida State University.)
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Texture: Statistical approaches

m Compute the histogram of the area of interest.
® The n'" moment of z about the mean is

L-1 L=1l
Mn(z) = Z (Zi - m)np(zi) m = Z Zz'p(zz')
i=0 =0

® The second moment (n = 2) is of particular importance in texture description. It is
a measure of gray-level contrast that can be used to establish descriptors of relative
smoothness.

m For example, the texture measure, R, is O for areas of contrast intensity (the
variance is 0 here) and approaches 1 for large value of 0%(z)

1
=1 )
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Texture: Statistical approaches

B The third moment

L-1

o() = 3 (i = m)*p(z)

is a measure of the skewness of the histogram while the fourth moment is a measure of its
relatives flatness.

B Some useful additional texture measures bases on histograms include a measure of
“uniformity”, given by

Uniformity = LZI p?(2)
i=0
B Average entropy measure
L—1
Entropy = — » _ p(z:)logap(2i)
i=0
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Texture: Statistical approaches

Figure: Texture measures for the subimages shown in previous slide

Standard Third
Texture Mean deviation R (normalized) moment Uniformity Entropy
Smooth  82.64 11.79 0.002 —0.105 0.026 5.434
Coarse  143.56 74.63 0.079 —0.151 0.005 7.783
Regular  99.72 33.73 0.017 0.750 0.013 6.674
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Image Histograms

® The histogram of a digital image with intensity levels in the range [0, L — 1] is a

discrete function
h(rk) = ng (1)

where, 1 is the kth intensity value and ny is the number of pixels in the image
with intensity 7

k MN ’ ’ T ’

® p(rg) is an estimate of the probability of occurrence of intensity level r in an image.
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Compute histogram

Compute the histogram of the given image. First find out the number graylevels in the
image (how many bit image?).

1102 4]5]3]1
9111|4721
1037|3533
1121331321
7151616761
1141 1]4]9]1
2181|1511 0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Texture: Gray level co-occurrence matrix (GLCM)

® Gray Level Co-occurance Matrix: Gy (i, 5)
where : =0,1,2,...,L—1,57=0,1,2,..., L — 1, L is maximum intensity level.

1 210]0]0[1]1]|0
1] Dl7]53]2 210/0/0fof1]|1]o0]o0
sltle|1)2]s 3(o|t1]of|1|ojofolo
8|8|6|8|1]2 4lojof1]{oft]olo]lo
4314|551 si2|of1]{oft]ololo
8787 |@[2> 63 0|0 0]0]0]1
718G DIG[D>— 7]0ojojo]o|1|1|0]2

gl1]|ofojolol2]2]1

Image f Co-occurrence matrix G

® Above calculation is just for demonstration. For real images, GLCM matrix dimension is
L x L, where index variesas i =0,1,2,...,L—1,5=0,1,2,...,L — 1.
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GLCM Features

B Maximum probability: Measure of the strongest response of G. The range of value is [0, 1].

[Maximum probability = magxpij]
)

B Contrast: A measure of intensity contrast between a pixel and its neighbor over the entire image.
The range of values is 0 (When G is constant) to (L — 1)2.

=1l Ih=il

Contrast = E Z (i — 5)*pis

i=0 j=0

B /nverse Element Difference Moment: A measure of intensity contrast between a pixel and its
neighbor.

Zzi(i]f;)k for i # j
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GLCM Features

B Uniformity/Energy. A measure of how intensities are uniformly distributed.

L—-1L-1

Uniformity = Z Z pij2

i=0 j=0

B Homogeneity: Measures the spatial closeness of the distribution of elements in GG to the diagonal.
The range of values is [0,1], with the maximum being achieved when G is a diagonal matrix.

L—1L-1
DPij
Homogeneity =
geneity = Zzl_ﬂl_ﬂ
=0 j=0
also defined as
L—1L—1

Homogeneity = Z Z

=0 j= 01+Z—]
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GLCM Features

B Entropy: Measures the randomness of the elements of GG. The entropy is 0 when all p;;'s are 0 and
is maximum when all p;;'s are equal. The maximum value is 2log, L.

L—1L—1

Entropy = — E Z pijlogypij

i=0 j=0

B Correlation: A measure of how correlated a pixel is to its neighbor over the entire image. Range of
values is 1 to —1.

Correlation = Z Z (i = mr)(J — me)pi;

i=0 j=0 e
L—1 L—1 L—1 L-—1
mriE ZE Dij mngjE Dij
i=0 ;=0 j=0 i=0

L—1 L—1 L—1 L—1
2 . 2 2 . 2
o, =) (i—m;) pij  oe=) (G—me) Dij
i=0 =0 =0 i=0
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GLCM feature Visualization
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Local Binary Pattern

B Basic Local Binary Pattern is governed by

{bkz{ S } and  (LBP(x) = min {P,})

otherwise

where P; is decimal equivalent of binary sequence b;.

arte L e e
6 719 A1 1[1[1[1]1]o]1]7 P23
1800 ] [ [ [ [ [ i [ poe
AL L [ AT »e
LBP > | ATt []o[1][1[1[17]@ P20
Ao [1]1]1]1]@ P22
1 LD LI e

o[ [a]1[1[a]1] p=tz
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Local Binary Pattern: Example

L[] 2722 2 =226

Can you compute LBP at the position (?)?
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Local Binary Pattern: Example

corner non-uniform
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