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Introduction

= Systems of linear equations that have to be solved simultaneously arise in
problems that include several (possibly many) variables that are dependent on
each other.

= A system of two (or three) equations with two (or three) unknowns can be
solved manually by substitution or other mathematical methods (e.g.,
Cramer's rule).

® Solving a system in this way is practically impossible as the number of
equations (and unknowns) increases beyond three.
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A Practical Example

m Using Kirchhoff's law, the currents i1, 75, 73, and iy
can be determined by solving the following system of
four equations:

911 —4ig — 243 =24
—44y + 17iy — 615 — 31y = —16
—2ip — 6ty + 1443 — 614 =0
—3ig — 613 + 1124 = 18
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Topics to be covered

Vector, matrices and their properties

Linear system of equations

Upper triangular linear system

Gaussian Elimination & Pivoting

Triangular factorization

Iterative methods for linear systems
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Preliminaries

m Vector/Matrices and their properties

0 A vector has magnitude and direction. Vectors are useful in representing
practical quantities.
0 In a generalized form, a vector x can be represented in n-dimensional space as

where the numbers x1, 29, ..., x, are called the components or coordinates of
vector X.

0 When a vector is used to denote a point or position in space, it is called a
position vector.

O When it is used to denote a movement between two points in space, it is called
a displacement vector.
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Preliminaries

m Let another vector be y = (y1,¥2,...,%n). The two vectors y and x are said
to be equal if and only if each corresponding coordinate is the same; that is,

X=y & ;=Y for =12 ...,n. (1)
® The sum of the vectors x and y is computed component by component.
X+y:($1+yh$2+927--'7$n+yn) (2)

® The negative of the vector x is obtained by replacing each coordinate with its
negative.

—x = (=21, T2, ..., —Ty) (3)

m The difference x — y is formed by taking the difference in each coordinate:

y—X:(yl—l’l,’yg—l'g,...,yn—xn) (4)
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Preliminaries

m Vectors in n-dimensional space obey the algebraic property
y—x=y+(-x). ()
= |f ¢ is a real number (scalar), we define scalar multiplication ¢x as follows:
cx = (cxy, Ccxa, ..., CTy). (6)

m |f ¢ and d are scalars, then the weighted sum ¢x + dy is called a linear
combination of x and y.

X 4+ dx = (Cl’l +dy1,69€2+d3/27~-7033n+dyn> (7)
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Preliminaries

® The dot product of the two vectors x and y is a scalar quantity (real number)
defined by the equation

XY =Ty + TaYa + ...+ Tpln (8)
® The norm (or length) of the vector x is defined by
x| = (@ + 23+ 2p) (9)

Above equation is referred to as the Euclidean norm (or length) of the vector
X.

® [t is worth noting that

Ix|*= (22 + 25+ ... +22) =x-x (10)
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Preliminaries

B The distance travelled by a particle moving from points x to point y in n dimensional space
is given by
=yl =y —21)* + (2 — 22)° + .o 4 (g — 20)*) " (11)
B Vector Algebra: Suppose that x, y, and rmz are n-dimensional vectors and a and b are
scalars (real numbers). The following properties of vector addition and scalar multiplication

hold:

vy+x=x+y commutative property (12)

0+x=x+0 additive property (13)
x—x=x+(—x) additive inverse (14)
(x+y)+z=x+(y+2) associative property (15)

(a+b)x = ax + bx distributive property of scalars (16)
a(x+y)=ax+ay distributive property for vectors (17)

a(bx) = (ab)x associative property for scalars (18)
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Matrices

There is a close relationship between matrices and vectors.

The matrix may be thought of as being composed of row vectors, or,
alternatively, column vectors.

A vector is a special case of a matrix.

® A row vector is simply a matrix with one row and several columns, and a
column vector is simply a matrix with several rows and one column.
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Matrices

® A matrix is a rectangular array of numbers that is arranged systematically in
rows and columns.

= A matrix having m rows and n columns is called an m x n (read “m by n")
matrix.

= The capital letter A denotes a matrix, and the lowercase subscripted letter a;;
denotes one of the numbers forming the matrix.
A=layl] . for1<i<m,1<j<n, (19)
where a;; is the number in location (i, j (i.e., stored in the i*" row and ;"
column of the matrix). We refer to a;; as the element in location (7, j).
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Matrices

® |n expanded form

a11
21

Am

a2
22

A2

Am2

alj
Cle

A1n
Q2n,

Ain

a'mn

Dr. Kundan Kumar

(20)

Numerical Methods (MTH4002)




Preliminaries
0000000080 00000

Matrices

m Matrix Addition and Scalar multiplication: Suppose that A, B, and C are
m X n matrices and p and ¢ are scalars. The following properties of matrix
addition and scalar multiplication hold

B+A=A+B commutative property  (21)
0+A=A+40 additive identity  (22)
A-A=A+4+(-A)=0 additive inverse  (23)
(A+B)+C=A+(B+C) associative property  (24)
(p+qA=pA+qdA distributive property for scalars  (25)
p(A+ B) =pA+pB distributive property for matrices  (26)
p(qA) = (pq)A associative property for scalars  (27)
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Special Matrices

m Square matrix

® Diagonal matrix

m Upper triangular matrix
m Lower triangular matrix
® [dentity matrix

® Zero matrix

® Symmetric matrix
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Cramer's Rule

m A set of n simultaneous linear equations with n unknowns =1, s, ..., x, is
given by:

a; Ty + apexe + ...+ ATy, = bl

211 + AT + ... + A2pTy = by

Ap1T1 + ApaZ2 + ... + App®y = bn
® The system can be written compactly by using matrices:

@11 Q12 ... Qip Iy by
a21 A29 ... QA9pn i) bg

S =1 . (28)
apl QAp2 .. Gpn Tn by,

Dr. Kundan Kumar
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Cramer's Rule

B The system or set of equation can also be written as
A-x=Db or [A][x] = [b]

where A is the matrix of coefficients, x is the vector of n unknowns, and b is the
vector containing the right-hand sides of each equation.

®m Cramer’s rule states that the solution to set of linear equations, if it exists, is given
by:
_ det(4]) o
:L‘]—M or ]—1,2,...,77/
where A; is the matrix formed by replacing the jth column of the matrix A with
the column vector b.
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Criteria to exist the solution

= Solutions can exist only if det(A) # 0.
® The only way that det(A) can be zero is either

0 if two or more columns or rows of A are identical or
0 one or more columns (or rows) of A are linearly dependent on other columns (or
rows).
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Example

Concrete (used for sidewalks, etc.) is a mixture of portland cement, sand,
and gravel. A distributor has three batches available for contractors. Batch
1 contains cement, sand, and gravel mixed in the proportions 1/8, 3/8,
4/8; batch 2 has the proportions 2/10, 5/10, 3/10; and batch 3 has the
proportions 2/5, 3/5, 0/5. For constructing a sidewalk of 10 cubic yards
how much cubic yards of each batch to be mixed such that the mixture
contains 2.3, 4.8, and 2.9 cubic yards of portland cement, sand, and gravel,
respectively?
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Overview of Numerical Methods for Solving SLAE

m Two types of numerical methods are used for solving systems of linear
algebraic equations:
0 Direct method
O lterative method

® |n direct methods, the solution is calculated by performing arithmetic
operations with the equations.

® |n iterative methods, an initial approximate solution is assumed and then used
in an iterative process for obtaining successively more accurate solutions.
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Direct methods

® |n direct methods, the solution is calculated by performing arithmetic
operations with the equations.

m The system of equations that is initially given in the general form is
manipulated to an equivalent system of equations that can be easily solved.

m Three systems of equations (equivalent) that can be easily solved are

0 Upper triangular,
O Lower triangular, and
0 Diagonal forms.

® Three direct methods for solving systems of equations

1. Gauss elimination,
2. Gauss-Jordan, and
3. LU decomposition
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Upper triangular

® The upper triangular form can be written in a matrix form for a system of four
equations as

a1171 + a12w2 + a1373 + a1474 = by a1 a2 G13 a4 Ty by
A22To + A2373 + A4y = by 0 a2 a3 aoy T2 | | b2

a33T3 + agary = b3 0 0 a3 azn x3 | | b3

g4y = b4 0 0 0 44 T4 b4

® The system in this form has all zero coefficients below the diagonal.
® Can be solved by a procedure called back substitution.

m |t starts with the last equation, which is solved for x4. The value of x4 is then
substituted in the next-to-the-last equation, which is solved for x3. The
process continues in the same manner all the way up to the first equation.
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Upper triangular

® |n the case of four equations, the solution is given by:

by b3 — azqxy by — (azsws + ag4xy)
T4 = - 2 xe = , and
Q44 a33 @22
- by — (a1272 + a1373 + a1474)
1=

a1y
m For a system of n equations in upper triangular form, a general formula for the

solution using back substitution is

by,
T, =——
ann
by — > 2" air;
—it1 QigT5
T = J i=n—1n-2,...,1

Qi
® The upper triangular form and back substitution are used in the Gauss

elimination method.
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Lower triangular

® The lower triangular form can be written in a matrix form for a system of four
equations as

a11x1 = b1 a1 0 0 0 X1 b1
2121 + a2 =by a1 aze 0 O zo | | b2
a3171 + 322 + a33 T3 = b3 az;1 azy azz 0 x3 | | b3
4171 + 42T + A4373 + G447y = by 41 Q42 Q43 Q44 T4 by

m The system in this form has zero coefficients above the diagonal.
® Can be solved by a procedure called forward substitution.

m |t starts with the first equation, which is solved for x;. The value of x; is then
substituted in the second equation, which is solved for z5. The process
continues in the same manner all the way down to the last equation.
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Lower triangular

® |n the case of four equations, the solution is given by:

by by — ag121 bz — (as1z1 + azax2)
Ty =— To=——"—, T3= , and
a1 a2 ass3
. by — (@a121 + asox2 + as3x3)
4 pu—

Q44
m For a system of n equations in lower triangular form, a general formula for the

solution using forward substitution is:

by
ry =—
an
Nl
b; io1 QT
T; = 1=2,3,...,n
Qi
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Diagonal triangular

® The diagonal form of a system of linear equations and the matrix form for
system of four equation is given below

a1y = b1 all 0 0 0 X b1
229 = b2 0 a292 0 0 €Zo o b2

as3xrs = b3 0 0 ass 0 I3 o bg

gy = b4 0 0 0 aaq Ty b4
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Example

Question: Use back substitution to solve the linear system

433'1 — T2 + 21’3 + 31’4 =20
—21’2 I 7%3 - 41’4 = -7
6!E3 + 51‘4 = 4

31’4 =6
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Example

Question: Show that there is no solution to the linear system

433'1 — T2 + 21’3 + 31’4 =20
OZL’Q + 7%3 — 41’4 =—7

6!E3 + 51‘4 = 4

31’4 =6
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Example

Question: Show that there are infinitely many solutions to

433'1 — T2 + 21’3 + 31’4 =20
OZL’Q ol 7%3 — OI’4 =—7

6!E3 + 51‘4 = 4

31’4 =6
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Gauss Elimination Method

m The Gauss elimination method is a procedure for solving a system of linear
equations.

® |n this procedure, a system of equations that is given in a general form is
manipulated to be in upper triangular form, which is then solved by using back
substitution.

a1171 + 1272 + 41373 + @144 = by ailr ai2 a3 Qa4 T by
2171 + G22T2 + A23T3 + A24T4 = Do a1 dz2  G23 (24 T2 | _ | b2
a3171 + 322 + azzr3 + a3qry = by az; a3z a3z a4 3 b3
4171 + Q42T + 04373 + G44Tg = by 41 Q42 Q43 Q44 T4 by
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Gauss Elimination Method

® The system of equations is manipulated into an equivalent system of
equations that has the form:

anxy tapx, +apx;taux, = b
ApXy +ayxy+ayx, = by
ayx3 T ajx, = bj

ayxy = b}

® The matrix form of the equivalent system is
ap 4p a3 94 x
0 dyadydy x
0 0 diy4a'y o
0 0 0 dy x,
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Gauss elimination procedurel: STEP 1 (forward elimination)

= Converting the system of equations to the upper triangular form is done in
following steps.
Step 1: In the first step, the first equation is unchanged, and the terms that
include the variable x; in all the other equations are eliminated. This is done
one equation at a time by using the first equation, which is called the pivot
equation. The coefficient a1 is called the pivot coefficient, or the pivot
element.

myi(@y %) +apx; +apxytayx,) = my b,

0+ (ayy — My ay3)xy + (a3 — My @13) X5 + (Qpg — My1G14)Xg = by —my by
]

b,
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Gauss elimination procedure

m To eliminate the term as;x; in the pivot equation, The first equation is
multiplied by ms; = as1/a11 , and then the equation is subtracted to second

equation.

m |t should be emphasized here that the pivot equation itself is not changed.

® The matrix form of the equations after this operation is shown as

ay A a3 dy
Al L} 1

0 d'ydyady

a3y A3y d33 A3y

Qg Agp Q3 Agq

X1
*2
X3

X4

m This process repeats in the same manner to eliminate the lower triangle

elements to zero.
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Gauss elimination procedure

» The first equation is multiplied by ms; = ag/an

my (anX tapx, tapxytayx,) = myb, ap ap
]
0 ay
0+ (asy —m3app) Xy + (azs —my a3)x3 + (@30 —my,a14)%g = by—my by 0 dy,
L ] L ] L ] L ]
' a a
a5 ay 'y b a1 e

m The first equation is multiplied by m4; = a4 /a1

AnXy T apx; tanx; +ayx, = b,

my (@ %)+ apx, T apx; taux,) = myb, ap ap
'

0 a5y

0+ (agy —myap)x; + (ag — My ay3)xs +(ag —mya4)x, = by—my by 0 ad'
L ] L 1 L 1] L 1 '
' 0 d

'y d'y a'y b', 2
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a3

a3

Q43

a;s
'

a3
'

a33

A}
a5
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ayy
i}

A4

a3y

Ay

a4
i}

a4
i}

34

]
A a4

*1
X2
X3

X4

X1
*2
X3

Xq

b,
b's

by
b
b's
by
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Gauss elimination procedure

m Step 2: In this step, first two equation do not change.
® The terms that include the variable x5 in rest of the equations are eliminated.
® The second equation is multiplied by mss = af,/al, and subtracted

. , . :

ay ap a3 a x b, myy(@'pXy +d'9axy + dyuxy) = myby

0 dpaydy x, b,

0 dydydy x, by 0+ (@33 —mand'yy)xs + (a'sy —mypd'p)xy = b'y—myb'y

0 a'y d's d | L I L | L )
294304 X, b, 'y 'y b,

® The second equation is multiplied by m4s = a),/ab, and subtracted
y 42/ 22

A Xy +aygxs T dyxy = by

' . . = .
My (@pdy + @p3Xy + dpgxy) = myb's ay ap a ay x b,
b b 0 dp dy du x (3

0+ (a'gs —Mypd'y3) Xy + (A gy — Mpd'ay)xy = —-m
(@43 = mapd'p3)%3 + (d'4g — mppd'yy) X, 4~ Ml 0 0 a"yad'y x, b";
L | L — L ! " " "
d'y 'y b, 0 0 d"y3a"4 x4 b",
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Gauss elimination procedure

m Step 4: In this step, first three equation do not change.
® The terms that include the variable z3 in rest of the equations are eliminated.
® The third equation is multiplied by m43 = a/j3/a45 and subtracted
a"g3x3+ d'yxy = by
- . " a;; ap a3 a b
mys(a"33%5 +a@"3xg) = my3b"; . ,12 ,13 ,14 B !
0 dpdy du x, b,
(0"44—7}143{1"34))(54 — b"4—m43b"3 0 0 a"33 a"34 X b"3
' L 1 m "
! a"'44 bm4 0 0 0 d 44 X4 b 4
|

The system of equations is now in an upper triangular form:
ayx)+apx; tapxytaux, = b
0 +ayx, + ayxy +ahyx, = b)
0+ 0 +afxs+aix, = by
0+ 0 + 0 +alx, = by
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Gauss elimination procedure

ap G 913 914 | | X, bl ap ap dp Ay || x bl ap 4 d13 A || x bl

Ay Ay Gy || X%y _ |by By d'y Ay Aoy ||y [BY 0 d'p dy dul||x| _ b

a3 A3 A33 A34 || X3 b, XKy a'sp A3z d'ag || x5 b'y 0 94 d"y3 d"y||x; by

41 Qg Q43 Aag || Xy by Xy A 3 day|| x4 by 0 G a3 d's||x, b,

Initial set of equations. Step 1. Step 2.

ay ap a3 ay ||x by an dp 913 9 || X% b,
0 dy dy dy x| | by 0 dy dy doy||x| |,
0 0 a3 a'y||x - by 0 0 a3 a'y||x - Bb";
0 0 Kya"ul|x, b", 0 0 0 a"y||x, ",

Pivot Pivot row

Step 3. Equations in upper triangular form. element

m Once transformed to upper triangular form, the equations can be easily solved

by using back substitution.
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Problem while applying the Gauss Elimination Method

m There are some potential difficulties when applying the Gauss elimination
method

0 The pivot element is zero: Since the pivot row is divided by the pivot element, a
problem will arise during the execution of the Gauss elimination procedure if the
value of the pivot element is equal to zero. In a procedure called pivoting, the
pivot row that has the zero pivot element is exchanged with another row that
has a nonzero pivot element.

O The pivot element is small relative to the other terms in the pivot row:
Significant errors due to rounding can occur when the pivot element is small
relative to other elements in the pivot row.
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Gauss elimination with pivoting

® |n the Gauss elimination procedure, the pivot equation is divided by the pivot
coefficient. This, however, cannot be done if the pivot coefficient is zero.
Ox;+2x,+3x; = 46
4x,-3x,+2x; = 16
2x;+4x,-3x3 = 12
® The division by zero can be avoided if the order in which the equations are
written is changed such that in the first equation the first coefficient is not
ZEro.
m For example, in the system above, this can be done by exchanging the first
two equations.
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Gauss elimination with pivoting

m All the coefficients of the linear system Ax = b can be stored in an
augmented matrix, denoted as [A | b], of dimension n x (n + 1). The linear

system is represented as follows:

@11 Q12 - Qip

Q21 Q22 -+ Q2p
[A|b]=| .

ap1 QAp2 - App

by
b
.2 (29)

bn

® The system Ax = b, with augmented matrix, can be solved by performing row

operations on the augmented matrix [A | b].

Dr. Kundan Kumar
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Gauss elimination with pivoting

m Elementary Row Operations: The following operations applied to the
augmented matrix that yield an equivalent linear system.
1. Interchanges: The order of two rows can be changed.

2. Scaling: Multiplying a row by a nonzero constant.
3. Replacement: The row can be replaced by the sum of that row and a nonzero

multiple of any other row; that is: row, = row, — m,, x row,
m Use these operations to obtain an equivalent upper-triangular system Ux =y
from a linear system Ax = b, where A is an n X n matrix.

Numerical Methods (MTH4002)
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Example

Question: Express the following system in augmented matrix form and find an equivalent
upper-triangular system and the solution.

xr1 +2x9 +x3 +4xy =13
2x1 +0xy +4z3+3x4 =28
4:271 +2’L’Q +2£173 + T4 = 20
—3x +x9 +3x3+2x4 =6

(30)
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Example

Question: Express the following system in augmented matrix form and find
an equivalent upper-triangular system and the solution.

O.Tl +2.T2 —|—4ZE3 + 3(L’4 = 28

2017 +1lzeg +x3+4ry =13 (31)
2%1 —|—4$2 —|—21‘3 +x4 = 20

ley —3x9 4323+ 224 =

Dr. Kundan Kumar Numerical Methods (MTH4002)
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Triangular Factorization

m The Gauss elimination method consists of two parts.
0 The first part is the elimination procedure.
O In the second part, the equivalent system is solved by using back substitution
® The elimination procedure requires many mathematical operations and
significantly more computing time than the back substitution calculations.
= During the elimination procedure, the matrix of coefficients A and the vector
b are both changed.
® This means that if there is a need to solve systems of equations that have the
same left-hand-side terms (same coefficient matrix A) but different
right-hand-side constants (different vectors b ), the elimination procedure has
to be carried out for each b again.
m |deally, it would be better if the operations on the matrix of coefficients A
were dissociated from those on the vector of constants b.
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Triangular Factorization

® |n this way, the elimination procedure with A is done only once and then is
used for solving systems of equations with different vectors b.

= One option for solving various systems of equations
Ax=Dh

that have the same coefficient matrices A but different constant vectors b is
to first calculate the inverse of the matrix A . Once the inverse matrix A~! is
known, the solution can be calculated by:

x=A"'b

® Calculating the inverse of a matrix, however, requires many mathematical
operations, and is computationally inefficient.
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Triangular Factorization

m A more efficient method of solution for this case is the LU decomposition
method.

® The LU decomposition method is a method for solving a system of linear
equations Ax =b

= In this method, the matrix of coefficients A is decomposed (factored) into a
product of two matrices L and U:

A=LU

where the matrix L is a lower triangular matrix and U is an upper triangular
matrix.

Dr. Kundan Kumar Numerical Methods (MTH4002)




Triangular Factorization
000@00000

Triangular Factorization

B The nonsingular matrix A has a triangular factorization if it can be expressed as the product
of a lower-triangular matrix L and an upper-triangular matrix U:

A=LU (32)
In matrix form, this is written as
ai1 a2 a1z aia 1 0 0 0 Uil U2 U3 Ul4
as1 az2 a3 a4 | | mar 1 0 0 0 w2 u23 woy (33)
a31 a3z a3z a34 m3; mgzz 1 0 0 0 uszz us4
(41 Q42 Q43 Q44 myy Mgz Mgz 1 0 0 0 uy

The condition that A is nonsingular implies that ug, = 0 for all k. The notation for the
entries in L is m,;.
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Triangular Factorization

m So, we have

LUx = b. (34)

m We can define y = Ux and then solve the two systems:
first solve Ly=b  for y (35)
then solve Ux =1y for x (36)

® |n equation form, we must first solve the lower-triangular system

Y1 =b
mo1y1 + Y2 = by (37)
ms1y1 + Ma2y2 + Y3 = b3

Ma1y1 + MaYo + Masys +ys = by
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Triangular Factorization

= Compute y1, Y2, y3, and y4 and use them in solving the upper-triangular
system
1171 + U122 + U13T3 + U14Ty = Y1
U92L9 + U93T3 + Uy Ty =
2202 2303 2 Y2 (38)

U333 + U3aT4 = Y3

U4z, = Y4
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LU Decomposition Using the Gauss Elimination Procedure

Solve the following system of equation using the triangular factorization

method.

ap dyp Q13 A "1 0 00 ay ap ap ay
21 92 933 Ay my 1 0 0 0 dydy dy
as) a3 d33 Ay mymy 10 0 0 a3 a'y
Q41 Az Ag3 Agq myy mymz 1 000 ay

4 -2 -3 6 1 0 0 0[[4-2-36

-6 7 65 -6/ _|-151 0 0{|0 4 2 3

1 7562555 0252 1 0/|0 0 3 2

—-12 22 155 -1 -3 4-051/](0 0 0 4
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Triangular Factorization
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Example

Solve the following system of equation using the triangular factorization
method.
x1+2$2+4x3+x4:21
2%1 + 8%2 + 61’3 == 41’4 =52 (39)
3x1+ 10z + 8x3 + 8x4 = 79
41151 —+ 121’2 =+ 101‘3 ol 61‘4 =82
Given
1 2 41 10 00 1 2 4 1
2 8 6 4 21 0 0 0 4 -2 2
A_31088_311O 00—23_LU
4 12 10 6 4 1 2 1 00 0 —6
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Answer: Use the forward-substitution method to solve LY = B:

Y1 =21
2y1 + 2 =52
3y1 + Y2 + 3 =179

dy1 +yo +2yz3 +ys =82

Compute the values y; = 21, yo = 52 — 2(21) = 10, y3 = 79 — 3(21) — 10 = 6, and
ys =82 —4(21) — 10 —2(6) = —24, or Y = [21 10 6 — 24]". Next write the system UX =Y

T+ 2x9 +4x3 + x4 = 21
4562 — 21’3 + 2174 =10

—2x3+ 314 =6
—b6zy = —24
Now use back substitution and compute the solution x4 = —24/(—6) = 4,
w3 = (6—3(4))/(=2) =3, zo = (10— 2(4) +2(3))/4 =2, and z; = 21 — 4 — 4(3) — 2(2) = 1,
or X =[1234].
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Iterative Method
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lterative Method

® |n iterative methods, an initial approximate solution is assumed and then used
in an iterative process for obtaining successively more accurate solutions.
= Two indirect (iterative) methods are

o Jacobi, and
0 Gauss-Seidel
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Jacobi method
©0000000

Jacobi iterative method

Question: Consider the system of equations

dr —y+z = 7
dz — 8y +z= -21 (40)
—2r+y+5z= 15

Solve using Jacobi method.

These equations can be written in the form

T+y—=z 21 +4x + 2 15+2x —y
r= ———— y=——-— 7= —=
4 8 )
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Jacobi iterative method

m This suggests the following Jacobi iterative process:
T4+ yr — 2k 21 +4xp + 2 15 4 22 — yi
Thp1 = —— Ypt1 = ——————  Zpy1 = ——————
4 8 5
m Let us start with Py = (0, yo, 20) = (1,2, 2), then check that solution

converge to the solution (2,4, 3).
m Substitute g = 1, yo = 2, and zg = 2 into the each equation and obtain the

new values
T+2-—2 21 4+4+2 15+2—2
T = +T =175 y = % =3.375 2z = % =3.00

(41)

The new point P, = (1.75,3.375,3.00) is closer to (2,4, 3) than F.
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Jacobi iterative method

Jacobi method
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m Table shows the convergence

k Xg Yk %k

0 1.0 2.0 2.0

1 1.75 3.375 3.0

2 1.84375 3.875 3.025

3 1.9625 3.925 2.9625

4 1.99062500 3.97656250 3.00000000

5 1.99414063 3.99531250 3.00093750
15 1.99999993 3.99999985 2.99999993
19 2.00000000 4.00000000 3.00000000
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Jacobi iterative method

m Linear systems with as many as 100,000 variables often arise in the solution of
partial differential equations.

m The coefficient matrices for these systems are sparse; that is, a large
percentage of the entries of the coefficient matrix are zero.

m |f there is a pattern to the nonzero entries (i.e., tridiagonal systems), then an
iterative process provides an efficient method for solving these large systems.

® Sometimes the Jacobi method does not work. Let see through an example.
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Jacobi iterative method

Question: Let the linear system defined in previous example be rearranged

as follows:
-2 +y+ 5z = 15
dr —8y+z2= -—-21
dr —y+z= 7

\

These equations can be written in the form

—15 5 21+4
_Thotydor A A a4y
3 8
This suggests the following Jacobi iterative process:
—15 4 yp + 5z 21 + 4z + 2z
Tht1 = 3 Yl =g A= 7 —Adxy + Yy
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Jacobi iterative method

m |f we start with Py = (¢, 4o, 20) = (1, 2,2) then solution will diverge away
from the solution (2,4, 3).

k Xk Yk Zk

0 1.0 2.0 2.0

1 —-1.5 3.375 5.0

2 6.6875 2.5 16.375

3 34.6875 8.015625 —17.25

4 —46.617188 17.8125 —123.73438
5 —307.929688 —36.150391 211.28125
6 502.62793 —124.929688 1202.56836
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Criterion for convergence

® |n view of examples solved using Jacobi iterative method, it is necessary to
have some criterion to determine whether the Jacobi iteration will converge.
Hence we make the following definition.

Definition
A matrix A of dimension n X n is said to be strictly diagonally dominant provided
that .
jark] > Y larg|  fork=1,2,....n (42)
T

® This means that in each row of the matrix the magnitude of the element on
the main diagonal must exceed the sum of the magnitudes of all other
elements in the row.
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Criterion for convergence

® The coefficient matrix of the linear system in Example solved using Jacobi is
strictly diagonally dominant because

Inrow 1: 4] >|— 1]+ [1]
Inrow 2: |—8| > 4]+ |1]
Inrow 3: [5]>|—2|+ |1

® The coefficient matrix A of the linear system in the Example, which is not
converged to the solution, is not strictly diagonally dominant because

Inrow 1: | —2] <|1]+ |5

Inrow 2: | —8| > [4] + |1
Inrow 3: [1] < 4]+ |- 1]
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Gauss-Seidel Iteration
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Gauss-Seidel lteration

® Since w1 is expected to be a better approximation to z than x.

m |t is reasonable that x;,; could be used in place of z; in the computation of
Yk+1-

m Similarly, 41 and yx1 might be used in the computation of 2.

m Let us solve the previous example to understand the process of Gauss-Seidel
iteration.

m Gauss-Seidel Iteration considers the following system of equations for previous
example

Tt yE — 2k ~ 21+ Axpyr + 2 154 2%k 41 — Yk
Tt = = Uk = S 21 = 3
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Gauss-Seidel lteration

m |f we start with Py = (¢, Yo, 20) = (1,2,2), then iteration using Gauss-Seidel
will converge to the solution (2,4, 3).

m Substitute yo = 2 and 2y = 2 into the first equation and obtain
T +2-2
4
® Then substitute z; = 1.75 and zp = 2

21 4+ 4(1.75) + 2

Y1 =
8

= Finally, substitute 1 = 1.75 and y; = 3.75 into the third equation to get
15+ 2(1.75) — 3.75
B 5

2 =1.75 (43)

= 3.75 (44)

—2.95 (45)

21
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Gauss-Seidel lteration

® The new point P, = (1.75,3.75,2.95) is closer to (2,4, 3) than P, and is
better estimate than the value obtained using Jacobi iterative method.

k Xk Yk Tk

0 1.0 2.0 2.0

1 1.75 3.75 2.95

2 1.95 3.96875 2.98625

3 1.995625 3.99609375 2.99903125

8 1.99999983 3.99999988 2.99999996

9 1.99999998 3.99999999 3.00000000
10 2.00000000 4.00000000 3.00000000
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