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Introduction

� Systems of linear equations that have to be solved simultaneously arise in
problems that include several (possibly many) variables that are dependent on
each other.

� A system of two (or three) equations with two (or three) unknowns can be
solved manually by substitution or other mathematical methods (e.g.,
Cramer’s rule).

� Solving a system in this way is practically impossible as the number of
equations (and unknowns) increases beyond three.
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A Practical Example

Chapter4 

Solving a System of Linear 

Equations 

Core Topics 

Gauss elimination method (4.2). 

Gauss elimination with pivoting (4.3). 

Gauss-Jordan elimination method (4.4). 

LU decomposition method (4.5). 

Use of MATLAB's built-in functions for solving a 

system of linear equations (4.8). 

Complementarv Topics 

Tridiagonal systems of equations (4.9). 

Error, residual, norms, and condition number (4.10). 

Ill-conditioned systems (4.11). 
Inverse of a matrix (4.6) 

Iterative methods (Jacobi, Gauss-Seidel) (4.7). 

3Q 

8 
4Q 2Q 

Figure 4-1: Electrical circuit. 

4.1 BACKGROUND 

Systems of linear equations that have to be solved simultaneously arise 

in problems that include several (possibly many) variables that are 

dependent on each other. Such problems occur not only in engineering 

and science, which are the focus of this book, but in virtually any disci­

pline (business, statistics, economics, etc.). A system of two (or three) 

equations with two (or three) unknowns can be solved manually by sub­

stitution or other mathematical methods (e.g., Cramer's rule, Section 

2.4.6). Solving a system in this way is practically impossible as the 

number of equations (and unknowns) increases beyond three. 

An example of a problem in electrical engineering that requires a 

solution of a system of equations is shown in Fig. 4-1. Using Kirch­

hoff's law, the currents i1, i2, i3, and i4 can be determined by solving 

the following system of four equations: 

9i1 -4i2-2i3 = 24 

-4i1+17i2-6i3-3i4 = -16 

- 2i1 -6i2 + 14i3 -6i4 = 0 
(4.1) 

-3i2-6i3+1li4 = 18 

99 

� Using Kirchhoff’s law, the currents i1, i2, i3, and i4
can be determined by solving the following system of
four equations:

9i1 − 4i2 − 2i3 = 24

−4i1 + 17i2 − 6i3 − 3i4 = −16
−2i1 − 6i2 + 14i3 − 6i4 = 0

−3i2 − 6i3 + 11i4 = 18
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Topics to be covered

� Vector, matrices and their properties

� Linear system of equations

� Upper triangular linear system

� Gaussian Elimination & Pivoting

� Triangular factorization

� Iterative methods for linear systems
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Preliminaries

� Vector/Matrices and their properties
� A vector has magnitude and direction. Vectors are useful in representing

practical quantities.
� In a generalized form, a vector x can be represented in n-dimensional space as

x = (x1, x2, ....., xn),

where the numbers x1, x2, . . . , xn are called the components or coordinates of
vector x.

� When a vector is used to denote a point or position in space, it is called a
position vector.

� When it is used to denote a movement between two points in space, it is called
a displacement vector.
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Preliminaries
� Let another vector be y = (y1, y2, . . . , yn). The two vectors y and x are said

to be equal if and only if each corresponding coordinate is the same; that is,

x = y ⇔ xj = yj, for j = 1, 2, . . . , n. (1)

� The sum of the vectors x and y is computed component by component.

x + y = (x1 + y1, x2 + y2, . . . , xn + yn) (2)

� The negative of the vector x is obtained by replacing each coordinate with its
negative.

−x = (−x1,−x2, . . . ,−xn) (3)

� The difference x− y is formed by taking the difference in each coordinate:

y − x = (y1 − x1, y2 − x2, . . . , yn − xn) (4)
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Preliminaries

� Vectors in n-dimensional space obey the algebraic property

y − x = y + (−x). (5)

� If c is a real number (scalar), we define scalar multiplication cx as follows:

cx = (cx1, cx2, . . . , cxn). (6)

� If c and d are scalars, then the weighted sum cx + dy is called a linear
combination of x and y.

cx + dx = (cx1 + dy1, cx2 + dy2, . . . , cxn + dyn) (7)
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Preliminaries
� The dot product of the two vectors x and y is a scalar quantity (real number)

defined by the equation

x · y = x1y1 + x2y2 + . . .+ xnyn (8)

� The norm (or length) of the vector x is defined by

|x| = (x2
1 + x2

2 + ...+ x2
n)

1/2 (9)

Above equation is referred to as the Euclidean norm (or length) of the vector
x.

� It is worth noting that

|x|2 = (x2
1 + x2

2 + ...+ x2
n) = x · x (10)
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Preliminaries
� The distance travelled by a particle moving from points x to point y in n dimensional space

is given by
|x− y| = ((y1 − x1)

2 + (y2 − x2)
2 + . . .+ (yn − xn)

2)1/2 (11)

� Vector Algebra: Suppose that x, y, and rmz are n-dimensional vectors and a and b are
scalars (real numbers). The following properties of vector addition and scalar multiplication
hold:

y + x = x + y commutative property (12)

0 + x = x + 0 additive property (13)

x− x = x + (−x) additive inverse (14)

(x + y) + z = x + (y + z) associative property (15)

(a+ b)x = ax + bx distributive property of scalars (16)

a(x + y) = ax + ay distributive property for vectors (17)

a(bx) = (ab)x associative property for scalars (18)
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Matrices

� There is a close relationship between matrices and vectors.

� The matrix may be thought of as being composed of row vectors, or,
alternatively, column vectors.

� A vector is a special case of a matrix.

� A row vector is simply a matrix with one row and several columns, and a
column vector is simply a matrix with several rows and one column.
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Matrices

� A matrix is a rectangular array of numbers that is arranged systematically in
rows and columns.

� A matrix having m rows and n columns is called an m× n (read “m by n”)
matrix.

� The capital letter A denotes a matrix, and the lowercase subscripted letter aij
denotes one of the numbers forming the matrix.

A = [aij]m×n for 1 ≤ i ≤ m, 1 ≤ j ≤ n, (19)

where aij is the number in location (i, j (i.e., stored in the ith row and jth

column of the matrix). We refer to aij as the element in location (i, j).
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Matrices

� In expanded form 

a11 a12 · · · a1j · · · a1n
a21 a22 · · · a2j · · · a2n

...
...

...
...

ai1 ai2 · · · aij · · · ain
...

...
...

...
aml am2 · · · amj · · · amn


= A. (20)
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Matrices

� Matrix Addition and Scalar multiplication: Suppose that A, B, and C are
m× n matrices and p and q are scalars. The following properties of matrix
addition and scalar multiplication hold

B + A = A+B commutative property (21)

0 + A = A+ 0 additive identity (22)

A− A = A+ (−A) = 0 additive inverse (23)

(A+B) + C = A+ (B + C) associative property (24)

(p+ q)A = pA+ qA distributive property for scalars (25)

p(A+B) = pA+ pB distributive property for matrices (26)

p(qA) = (pq)A associative property for scalars (27)
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Special Matrices

� Square matrix

� Diagonal matrix

� Upper triangular matrix

� Lower triangular matrix

� Identity matrix

� Zero matrix

� Symmetric matrix
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Cramer’s Rule
� A set of n simultaneous linear equations with n unknowns x1, x2, . . . , xn is

given by:
a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

...
... =

...

an1x1 + an2x2 + . . .+ annxn = bn
� The system can be written compactly by using matrices:

a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann




x1

x2
...
xn

 =


b1
b2
...
bn

 (28)
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Cramer’s Rule

� The system or set of equation can also be written as

A · x = b or [A][x] = [b]

where A is the matrix of coefficients, x is the vector of n unknowns, and b is the
vector containing the right-hand sides of each equation.

� Cramer’s rule states that the solution to set of linear equations, if it exists, is given
by:

xj =
det(A′j)

det(A)
for j = 1, 2, . . . , n

where A′j is the matrix formed by replacing the jth column of the matrix A with
the column vector b.
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Criteria to exist the solution

� Solutions can exist only if det(A) 6= 0.

� The only way that det(A) can be zero is either
� if two or more columns or rows of A are identical or
� one or more columns (or rows) of A are linearly dependent on other columns (or

rows).
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Example

Concrete (used for sidewalks, etc.) is a mixture of portland cement, sand,
and gravel. A distributor has three batches available for contractors. Batch
1 contains cement, sand, and gravel mixed in the proportions 1/8, 3/8,
4/8; batch 2 has the proportions 2/10, 5/10, 3/10; and batch 3 has the
proportions 2/5, 3/5, 0/5. For constructing a sidewalk of 10 cubic yards
how much cubic yards of each batch to be mixed such that the mixture
contains 2.3, 4.8, and 2.9 cubic yards of portland cement, sand, and gravel,
respectively?
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Overview of Numerical Methods for Solving SLAE

� Two types of numerical methods are used for solving systems of linear
algebraic equations:
� Direct method
� Iterative method

� In direct methods, the solution is calculated by performing arithmetic
operations with the equations.

� In iterative methods, an initial approximate solution is assumed and then used
in an iterative process for obtaining successively more accurate solutions.
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Direct methods

� In direct methods, the solution is calculated by performing arithmetic
operations with the equations.

� The system of equations that is initially given in the general form is
manipulated to an equivalent system of equations that can be easily solved.

� Three systems of equations (equivalent) that can be easily solved are
� Upper triangular,
� Lower triangular, and
� Diagonal forms.

� Three direct methods for solving systems of equations

1. Gauss elimination,
2. Gauss-Jordan, and
3. LU decomposition
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Upper triangular

� The upper triangular form can be written in a matrix form for a system of four
equations as
a11x1 + a12x2 + a13x3 + a14x4 = b1

a22x2 + a23x3 + a24x4 = b2
a33x3 + a34x4 = b3

a44x4 = b4


a11 a12 a13 a14
0 a22 a23 a24
0 0 a33 a34
0 0 0 a44




x1

x2

x3

x4

 =


b1
b2
b3
b4



� The system in this form has all zero coefficients below the diagonal.

� Can be solved by a procedure called back substitution.

� It starts with the last equation, which is solved for x4. The value of x4 is then
substituted in the next-to-the-last equation, which is solved for x3. The
process continues in the same manner all the way up to the first equation.
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Upper triangular
� In the case of four equations, the solution is given by:

x4 =
b4
a44

, x3 =
b3 − a34x4

a33
, x2 =

b2 − (a23x3 + a24x4)

a22
, and

x1 =
b1 − (a12x2 + a13x3 + a14x4)

a11
� For a system of n equations in upper triangular form, a general formula for the

solution using back substitution is

xn =
bn
ann

xi =
bi −

∑j=n
j=i+1 aijxj

aii
i = n− 1, n− 2, . . . , 1

� The upper triangular form and back substitution are used in the Gauss
elimination method.
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Lower triangular

� The lower triangular form can be written in a matrix form for a system of four
equations as

a11x1 = b1
a21x1 + a22x2 = b2
a31x1 + a32x2 + a33x3 = b3
a41x1 + a42x2 + a43x3 + a44x4 = b4


a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44




x1

x2

x3

x4

 =


b1
b2
b3
b4


� The system in this form has zero coefficients above the diagonal.

� Can be solved by a procedure called forward substitution.

� It starts with the first equation, which is solved for x1. The value of x1 is then
substituted in the second equation, which is solved for x2. The process
continues in the same manner all the way down to the last equation.
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Lower triangular

� In the case of four equations, the solution is given by:

x1 =
b1
a11

, x2 =
b2 − a21x1

a22
, x3 =

b3 − (a31x1 + a32x2)

a33
, and

x4 =
b4 − (a41x1 + a42x2 + a43x3)

a44
� For a system of n equations in lower triangular form, a general formula for the

solution using forward substitution is:

x1 =
b1
a11

xi =
bi −

∑j=i−1
j=1 aijxj

aii
i = 2, 3, . . . , n
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Diagonal triangular

� The diagonal form of a system of linear equations and the matrix form for
system of four equation is given below
a11x1 = b1

a22x2 = b2
a33x3 = b3

a44x4 = b4


a11 0 0 0
0 a22 0 0
0 0 a33 0
0 0 0 a44




x1

x2

x3

x4

 =


b1
b2
b3
b4


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Example

Question: Use back substitution to solve the linear system

4x1 − x2 + 2x3 + 3x4 = 20
−2x2 + 7x3 − 4x4 = −7

6x3 + 5x4 = 4
3x4 = 6
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Example

Question: Show that there is no solution to the linear system

4x1 − x2 + 2x3 + 3x4 = 20
0x2 + 7x3 − 4x4 = −7

6x3 + 5x4 = 4
3x4 = 6
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Example

Question: Show that there are infinitely many solutions to

4x1 − x2 + 2x3 + 3x4 = 20
0x2 + 7x3 − 0x4 = −7

6x3 + 5x4 = 4
3x4 = 6
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Gauss Elimination Method

� The Gauss elimination method is a procedure for solving a system of linear
equations.

� In this procedure, a system of equations that is given in a general form is
manipulated to be in upper triangular form, which is then solved by using back
substitution.

a11x1 + a12x2 + a13x3 + a14x4 = b1
a21x1 + a22x2 + a23x3 + a24x4 = b2
a31x1 + a32x2 + a33x3 + a34x4 = b3
a41x1 + a42x2 + a43x3 + a44x4 = b4


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44




x1

x2

x3

x4

 =


b1
b2
b3
b4


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Gauss Elimination Method
� The system of equations is manipulated into an equivalent system of

equations that has the form:

4.2 Gauss Elimination Method 

a11 a12 a13 a14 Xi 
0 a'ii a'23 a'i4 X2 
Q Q a'33 a'34 X3 
0 0 0 a'44 x4 

Figure 4-8: Matrix form of 
the equivalent system. 

a 11 a12 a13 a14 X1 
0 a'ii a'23 a'i4 Xi 

a31 a31 a33 a34 X3 

a41 a4i a43 a44 X4 

b1 

b' i 

b3 

b4 

Figure 4-9: Matrix form of the 
system after eliminating aii· 
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a)3x3 + a)4x4 = b) 
a44X4 = b4 
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(4.llb) 
(4.llc) 

(4.lld) 

(4.11) 

The first equation in the equivalent system, (4.lla), is the same as 

(4.lOa). In the second equation, (4.llb), the variable x1 is eliminated. 

In the third equation, (4.llc), the variables x1 and xi are eliminated. In 

the fourth equation, ( 4. lld), the variables x1, xi, and x3 are elimi­

nated. The matrix form of the equivalent system is shown in Fig. 4-8. 
The system of equations ( 4.11) is in upper triangular form, which can be 

easily solved by using back substitution. 

In general, various mathematical manipulations can be used for 

converting a system of equations from the general form displayed in 

Eqs. (4.10) to the upper triangular form in Eqs. (4.11). One in particu­

lar, the Gauss elimination method, is described next. The procedure can 

be easily programmed in a computer code. 

Gauss elimination procedure (forward elimination) 

The Gauss elimination procedure is first illustrated for a system of four 

equations with four unknowns. The starting point is the set of equations 

that is given by Eqs. (4.10). Converting the system of equations to the 
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equations with four unknowns. The starting point is the set of equations 

that is given by Eqs. (4.10). Converting the system of equations to the 

form given in Eqs. ( 4.11) is done in steps. 

Step 1: In the first step, the first equation is unchanged, and the terms 

that include the variable x1 in all the other equations are eliminated. 

This is done one equation at a time by using the first equation, which is 

called the pivot equation. The coefficient a11 is called the pivot coeffi­

cient, or the pivot element. To eliminate the term ai1x1 in Eq. (4.lOb), 

the pivot equation, Eq. (4.lOa), is multiplied by mi1 = ai1A'au , and 

then the equation is subtracted from Eq. (4.lOb): 

b' i 

It should be emphasized here that the pivot equation, Eq. (4.lOa), itself 
is not changed. The matrix form of the equations after this operation is 

shown in Fig. 4-9. 
Next, the term a31x1 in Eq. (4.lOc) is eliminated. The pivot equa­

tion, Eq. (4.lOa), is multiplied by m31 = a311fa11 and then is subtracted 
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Gauss elimination procedureL: STEP 1 (forward elimination)
� Converting the system of equations to the upper triangular form is done in

following steps.
Step 1: In the first step, the first equation is unchanged, and the terms that
include the variable x1 in all the other equations are eliminated. This is done
one equation at a time by using the first equation, which is called the pivot
equation. The coefficient a11 is called the pivot coefficient, or the pivot
element.

4.2 Gauss Elimination Method 

a11 a12 a13 a14 Xi 
0 a'ii a'23 a'i4 X2 
Q Q a'33 a'34 X3 
0 0 0 a'44 x4 

Figure 4-8: Matrix form of 
the equivalent system. 

a 11 a12 a13 a14 X1 
0 a'ii a'23 a'i4 Xi 

a31 a31 a33 a34 X3 

a41 a4i a43 a44 X4 

b1 

b' i 

b3 

b4 

Figure 4-9: Matrix form of the 
system after eliminating aii· 
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nation method, the system of equations is manipulated into an equiva­

lent system of equations that has the form: 

a11x1 + a12x2 + a13x3 + a14x4 = b1 
a2ixi + a23X3 + a24X4 = h2 

a)3x3 + a)4x4 = b) 
a44X4 = b4 

(4.lla) 
(4.llb) 
(4.llc) 

(4.lld) 

(4.11) 

The first equation in the equivalent system, (4.lla), is the same as 

(4.lOa). In the second equation, (4.llb), the variable x1 is eliminated. 

In the third equation, (4.llc), the variables x1 and xi are eliminated. In 

the fourth equation, ( 4. lld), the variables x1, xi, and x3 are elimi­

nated. The matrix form of the equivalent system is shown in Fig. 4-8. 
The system of equations ( 4.11) is in upper triangular form, which can be 

easily solved by using back substitution. 

In general, various mathematical manipulations can be used for 

converting a system of equations from the general form displayed in 

Eqs. (4.10) to the upper triangular form in Eqs. (4.11). One in particu­

lar, the Gauss elimination method, is described next. The procedure can 

be easily programmed in a computer code. 

Gauss elimination procedure (forward elimination) 

The Gauss elimination procedure is first illustrated for a system of four 

equations with four unknowns. The starting point is the set of equations 

that is given by Eqs. (4.10). Converting the system of equations to the 

form given in Eqs. ( 4.11) is done in steps. 

Step 1: In the first step, the first equation is unchanged, and the terms 

that include the variable x1 in all the other equations are eliminated. 

This is done one equation at a time by using the first equation, which is 

called the pivot equation. The coefficient a11 is called the pivot coeffi­

cient, or the pivot element. To eliminate the term ai1x1 in Eq. (4.lOb), 

the pivot equation, Eq. (4.lOa), is multiplied by mi1 = ai1A'au , and 

then the equation is subtracted from Eq. (4.lOb): 

b' i 

It should be emphasized here that the pivot equation, Eq. (4.lOa), itself 
is not changed. The matrix form of the equations after this operation is 

shown in Fig. 4-9. 
Next, the term a31x1 in Eq. (4.lOc) is eliminated. The pivot equa­

tion, Eq. (4.lOa), is multiplied by m31 = a311fa11 and then is subtracted 
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Gauss elimination procedure

� To eliminate the term a21x1 in the pivot equation, The first equation is
multiplied by m21 = a21/a11 , and then the equation is subtracted to second
equation.

� It should be emphasized here that the pivot equation itself is not changed.

� The matrix form of the equations after this operation is shown as

4.2 Gauss Elimination Method 

a11 a12 a13 a14 Xi 
0 a'ii a'23 a'i4 X2 
Q Q a'33 a'34 X3 
0 0 0 a'44 x4 
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nation method, the system of equations is manipulated into an equiva­

lent system of equations that has the form: 

a11x1 + a12x2 + a13x3 + a14x4 = b1 
a2ixi + a23X3 + a24X4 = h2 

a)3x3 + a)4x4 = b) 
a44X4 = b4 

(4.lla) 
(4.llb) 
(4.llc) 

(4.lld) 

(4.11) 

The first equation in the equivalent system, (4.lla), is the same as 

(4.lOa). In the second equation, (4.llb), the variable x1 is eliminated. 

In the third equation, (4.llc), the variables x1 and xi are eliminated. In 

the fourth equation, ( 4. lld), the variables x1, xi, and x3 are elimi­

nated. The matrix form of the equivalent system is shown in Fig. 4-8. 
The system of equations ( 4.11) is in upper triangular form, which can be 

easily solved by using back substitution. 

In general, various mathematical manipulations can be used for 

converting a system of equations from the general form displayed in 

Eqs. (4.10) to the upper triangular form in Eqs. (4.11). One in particu­

lar, the Gauss elimination method, is described next. The procedure can 

be easily programmed in a computer code. 

Gauss elimination procedure (forward elimination) 

The Gauss elimination procedure is first illustrated for a system of four 

equations with four unknowns. The starting point is the set of equations 

that is given by Eqs. (4.10). Converting the system of equations to the 

form given in Eqs. ( 4.11) is done in steps. 

Step 1: In the first step, the first equation is unchanged, and the terms 

that include the variable x1 in all the other equations are eliminated. 

This is done one equation at a time by using the first equation, which is 

called the pivot equation. The coefficient a11 is called the pivot coeffi­

cient, or the pivot element. To eliminate the term ai1x1 in Eq. (4.lOb), 

the pivot equation, Eq. (4.lOa), is multiplied by mi1 = ai1A'au , and 

then the equation is subtracted from Eq. (4.lOb): 

b' i 

It should be emphasized here that the pivot equation, Eq. (4.lOa), itself 
is not changed. The matrix form of the equations after this operation is 

shown in Fig. 4-9. 
Next, the term a31x1 in Eq. (4.lOc) is eliminated. The pivot equa­

tion, Eq. (4.lOa), is multiplied by m31 = a311fa11 and then is subtracted 

� This process repeats in the same manner to eliminate the lower triangle
elements to zero.
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Gauss elimination procedure
� The first equation is multiplied by m31 = a31/a11
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au a12 a13 a14 x, h, 

0 a'22 a'23 a'24 Xz b' 2 

0 a'32 a'33 a'34 X3 b' 3 

a41 a42 a43 a44 X4 b4 

Figure 4-10: Matrix form of the 
system after eliminating a31• 

au a12 a13 a,4 x, h, 

0 a'22 a'23 a'24 Xz b' 2 

0 a'32 a'33 a'34 X3 b' 3 

0 a'42 a'43 a'44 X4 b' 4 

Figure 4-11: Matrix form of the 
system after eliminating a41• 

au a12 a13 a,4 X1 

0 a'zz a'23 a'z4 X2 

0 0 a
"

33 a
"

34 X3 

0 a'4z a'43 a'44 X4 

Figure 4-12: Matrix form of the 
system after eliminating a32• 

Chapter 4 Solving a System of Linear Equations 

from Eq. (4.lOc): 

b' 3 

The matrix form of the equations after this operation is shown in Fig. 4-

10. 

Next, the term a41x1 in Eq. (4.lOd) is eliminated. The pivot equa-

tion, Eq. (4.lOa), is multiplied by m41 = a4111a11 and then is subtracted 

from Eq. (4.lOd): 

a41X1 + a42X2 + a43X3 + a44X4 = h4 

a' 44 b' 4 

This is the end of Step 1. The system of equations now has the follow­

ing form: 

aux1 + a12x2 + a13x3 + a14X4 = h1 
0 + ai2x2 + ai3X3 + ai4X4 = bi 
0 + a32x2 + a33x3 + a34x4 = h3 
0 + a42x2 + a43x3 + a44X4 = h4 

(4.12a) 
(4.12b) 

( 4.12c) 

(4.12d) 

(4.12) 

The matrix form of the equations after this operation is shown in Fig. 4-

11. Note that the result of the elimination operation is to reduce the first 

column entries, except a11 (the pivot element), to zero. 

Step 2: In this step, Eqs. (4.12a) and (4.12b) are not changed, and the 

terms that include the variable x2 in Eqs. (4.12c) and (4.12d) are elimi­

nated. In this step, Eq. (4.12b) is the pivot equation, and the coefficient 

a'22 is the pivot coefficient. To eliminate the term a'32x2 in Eq. (4.12c), 

the pivot equation, Eq. (4.12b), is multiplied by m32= a'32/a'22 and 

then is subtracted from Eq. (4.12c): 

a" 33 a" 34 b" 3 
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Chapter 4 Solving a System of Linear Equations 

from Eq. (4.lOc): 

b' 3 

The matrix form of the equations after this operation is shown in Fig. 4-

10. 

Next, the term a41x1 in Eq. (4.lOd) is eliminated. The pivot equa-

tion, Eq. (4.lOa), is multiplied by m41 = a4111a11 and then is subtracted 

from Eq. (4.lOd): 

a41X1 + a42X2 + a43X3 + a44X4 = h4 

a' 44 b' 4 

This is the end of Step 1. The system of equations now has the follow­

ing form: 

aux1 + a12x2 + a13x3 + a14X4 = h1 
0 + ai2x2 + ai3X3 + ai4X4 = bi 
0 + a32x2 + a33x3 + a34x4 = h3 
0 + a42x2 + a43x3 + a44X4 = h4 

(4.12a) 
(4.12b) 

( 4.12c) 

(4.12d) 

(4.12) 

The matrix form of the equations after this operation is shown in Fig. 4-

11. Note that the result of the elimination operation is to reduce the first 

column entries, except a11 (the pivot element), to zero. 

Step 2: In this step, Eqs. (4.12a) and (4.12b) are not changed, and the 

terms that include the variable x2 in Eqs. (4.12c) and (4.12d) are elimi­

nated. In this step, Eq. (4.12b) is the pivot equation, and the coefficient 

a'22 is the pivot coefficient. To eliminate the term a'32x2 in Eq. (4.12c), 

the pivot equation, Eq. (4.12b), is multiplied by m32= a'32/a'22 and 

then is subtracted from Eq. (4.12c): 

a" 33 a" 34 b" 3 

� The first equation is multiplied by m41 = a41/a11
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Chapter 4 Solving a System of Linear Equations 

from Eq. (4.lOc): 

b' 3 

The matrix form of the equations after this operation is shown in Fig. 4-

10. 

Next, the term a41x1 in Eq. (4.lOd) is eliminated. The pivot equa-

tion, Eq. (4.lOa), is multiplied by m41 = a4111a11 and then is subtracted 

from Eq. (4.lOd): 

a41X1 + a42X2 + a43X3 + a44X4 = h4 

a' 44 b' 4 

This is the end of Step 1. The system of equations now has the follow­

ing form: 

aux1 + a12x2 + a13x3 + a14X4 = h1 
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The matrix form of the equations after this operation is shown in Fig. 4-

11. Note that the result of the elimination operation is to reduce the first 

column entries, except a11 (the pivot element), to zero. 

Step 2: In this step, Eqs. (4.12a) and (4.12b) are not changed, and the 

terms that include the variable x2 in Eqs. (4.12c) and (4.12d) are elimi­

nated. In this step, Eq. (4.12b) is the pivot equation, and the coefficient 

a'22 is the pivot coefficient. To eliminate the term a'32x2 in Eq. (4.12c), 

the pivot equation, Eq. (4.12b), is multiplied by m32= a'32/a'22 and 

then is subtracted from Eq. (4.12c): 
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Chapter 4 Solving a System of Linear Equations 

from Eq. (4.lOc): 

b' 3 

The matrix form of the equations after this operation is shown in Fig. 4-

10. 

Next, the term a41x1 in Eq. (4.lOd) is eliminated. The pivot equa-

tion, Eq. (4.lOa), is multiplied by m41 = a4111a11 and then is subtracted 

from Eq. (4.lOd): 

a41X1 + a42X2 + a43X3 + a44X4 = h4 

a' 44 b' 4 

This is the end of Step 1. The system of equations now has the follow­

ing form: 

aux1 + a12x2 + a13x3 + a14X4 = h1 
0 + ai2x2 + ai3X3 + ai4X4 = bi 
0 + a32x2 + a33x3 + a34x4 = h3 
0 + a42x2 + a43x3 + a44X4 = h4 

(4.12a) 
(4.12b) 

( 4.12c) 

(4.12d) 

(4.12) 

The matrix form of the equations after this operation is shown in Fig. 4-

11. Note that the result of the elimination operation is to reduce the first 

column entries, except a11 (the pivot element), to zero. 

Step 2: In this step, Eqs. (4.12a) and (4.12b) are not changed, and the 

terms that include the variable x2 in Eqs. (4.12c) and (4.12d) are elimi­

nated. In this step, Eq. (4.12b) is the pivot equation, and the coefficient 

a'22 is the pivot coefficient. To eliminate the term a'32x2 in Eq. (4.12c), 

the pivot equation, Eq. (4.12b), is multiplied by m32= a'32/a'22 and 

then is subtracted from Eq. (4.12c): 

a" 33 a" 34 b" 3 
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Gauss elimination procedure
� Step 2: In this step, first two equation do not change.
� The terms that include the variable x2 in rest of the equations are eliminated.
� The second equation is multiplied by m32 = a′32/a

′
22 and subtracted
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Chapter 4 Solving a System of Linear Equations 

from Eq. (4.lOc): 

b' 3 

The matrix form of the equations after this operation is shown in Fig. 4-

10. 

Next, the term a41x1 in Eq. (4.lOd) is eliminated. The pivot equa-

tion, Eq. (4.lOa), is multiplied by m41 = a4111a11 and then is subtracted 

from Eq. (4.lOd): 

a41X1 + a42X2 + a43X3 + a44X4 = h4 

a' 44 b' 4 

This is the end of Step 1. The system of equations now has the follow­

ing form: 

aux1 + a12x2 + a13x3 + a14X4 = h1 
0 + ai2x2 + ai3X3 + ai4X4 = bi 
0 + a32x2 + a33x3 + a34x4 = h3 
0 + a42x2 + a43x3 + a44X4 = h4 

(4.12a) 
(4.12b) 

( 4.12c) 

(4.12d) 

(4.12) 

The matrix form of the equations after this operation is shown in Fig. 4-

11. Note that the result of the elimination operation is to reduce the first 

column entries, except a11 (the pivot element), to zero. 

Step 2: In this step, Eqs. (4.12a) and (4.12b) are not changed, and the 

terms that include the variable x2 in Eqs. (4.12c) and (4.12d) are elimi­

nated. In this step, Eq. (4.12b) is the pivot equation, and the coefficient 

a'22 is the pivot coefficient. To eliminate the term a'32x2 in Eq. (4.12c), 

the pivot equation, Eq. (4.12b), is multiplied by m32= a'32/a'22 and 

then is subtracted from Eq. (4.12c): 

a" 33 a" 34 b" 3 
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Chapter 4 Solving a System of Linear Equations 

from Eq. (4.lOc): 

b' 3 

The matrix form of the equations after this operation is shown in Fig. 4-

10. 

Next, the term a41x1 in Eq. (4.lOd) is eliminated. The pivot equa-

tion, Eq. (4.lOa), is multiplied by m41 = a4111a11 and then is subtracted 

from Eq. (4.lOd): 

a41X1 + a42X2 + a43X3 + a44X4 = h4 

a' 44 b' 4 

This is the end of Step 1. The system of equations now has the follow­

ing form: 

aux1 + a12x2 + a13x3 + a14X4 = h1 
0 + ai2x2 + ai3X3 + ai4X4 = bi 
0 + a32x2 + a33x3 + a34x4 = h3 
0 + a42x2 + a43x3 + a44X4 = h4 

(4.12a) 
(4.12b) 

( 4.12c) 

(4.12d) 

(4.12) 

The matrix form of the equations after this operation is shown in Fig. 4-

11. Note that the result of the elimination operation is to reduce the first 

column entries, except a11 (the pivot element), to zero. 

Step 2: In this step, Eqs. (4.12a) and (4.12b) are not changed, and the 

terms that include the variable x2 in Eqs. (4.12c) and (4.12d) are elimi­

nated. In this step, Eq. (4.12b) is the pivot equation, and the coefficient 

a'22 is the pivot coefficient. To eliminate the term a'32x2 in Eq. (4.12c), 

the pivot equation, Eq. (4.12b), is multiplied by m32= a'32/a'22 and 

then is subtracted from Eq. (4.12c): 

a" 33 a" 34 b" 3 

� The second equation is multiplied by m42 = a′42/a
′
22 and subtracted

4.2 Gauss Elimination Method 

au a12 a13 a14 X1 bl 
0 a'zz a'23 a'z4 Xz b'2 

0 0 a"33 a"34 X3 b" 3 

0 0 a"43 a"44 X4 b"4 

Figure 4-13: Matrix form of the 
system after eliminating a42• 

a11 au a13 a14 X1 bl 
0 a'zz a'23 a'z4 Xz b' 2 

0 0 a"33 a"34 X3 b" 3 

0 0 0 a"' 44 X4 b"' 4 

Figure 4-14: Matrix form of the 
system after eliminating a43• 
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The matrix form of the equations after this operation is shown in Fig. 4-

12. 

Next, the term a'42x2 in Eq. (4.12d) is eliminated. The pivot equa-

tion, Eq. (4.12b), is multiplied by m42 = a'42/a'22 and then is subtracted 

from Eq. (4.12d): 

a'4zX2 + a'43X3 + a'44X4 = b'4 

a" 43 

This is the end of Step 2. The system of equations now has the follow­

ing form: 

a11x1 + a12x2 + a13x3 + a14x4 = b1 
0 +a2,2x2 + a2,3x3 + a2,4x4 = b2, 
0 + 0 + a'.bx3 + a)4x4 = b'3 

0 + 0 + a'.'3x3 + a'44x4 = b"4 

(4.13a) 
(4.13b) 

(4.13c) 

(4.13d) 

(4.13) 

The matrix form of the equations at the end of Step 2 is shown in Fig. 4-

13. 

Step 3: In this step, Eqs. (4.13a), (4.13b), and (4.13c) are not changed, 

and the term that includes the variable x3 in Eq. ( 4.13d) is eliminated. 

In this step, Eq. (4.13c) is the pivot equation, and the coefficient a"33 is 

the pivo coeffic·e . To eliminate the term a"43x3 in Eq. (4.13d), the 

pivot equation is multiplied by m43 = a"43;1a'' 3 and then is subtracted 

from Eq. (4.13d): 

( " " ) - b" b" a 44 -m43a 34 X4 - 4 -m43 3 

a"'44 b"'4 
This is the end of Step 3. The system of equations is now in an upper tri­

angular form: 

a11x1 + a12X2 + a13x3 + a14X4 = b1 
0 +a2,2x2 + a2,3x3 + a2,4x4 = b2, 
0 + 0 + a'.J3x3 + a)4x4 = b'3 

0 + 0 + 0 + a��X4 = b'4' 

(4.14a) 
(4.14b) 

(4.14c) 

(4.14d) 

(4.14) 

The matrix form of the equations is shown in Fig. 4-14. Once trans­

formed to upper triangular form, the equations can be easily solved by 

using back substitution. The three steps of the Gauss elimination pro­

cess are illustrated together in Fig. 4-15. 
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The matrix form of the equations after this operation is shown in Fig. 4-

12. 

Next, the term a'42x2 in Eq. (4.12d) is eliminated. The pivot equa-

tion, Eq. (4.12b), is multiplied by m42 = a'42/a'22 and then is subtracted 

from Eq. (4.12d): 

a'4zX2 + a'43X3 + a'44X4 = b'4 

a" 43 

This is the end of Step 2. The system of equations now has the follow­

ing form: 

a11x1 + a12x2 + a13x3 + a14x4 = b1 
0 +a2,2x2 + a2,3x3 + a2,4x4 = b2, 
0 + 0 + a'.bx3 + a)4x4 = b'3 

0 + 0 + a'.'3x3 + a'44x4 = b"4 

(4.13a) 
(4.13b) 

(4.13c) 
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The matrix form of the equations at the end of Step 2 is shown in Fig. 4-

13. 

Step 3: In this step, Eqs. (4.13a), (4.13b), and (4.13c) are not changed, 

and the term that includes the variable x3 in Eq. ( 4.13d) is eliminated. 

In this step, Eq. (4.13c) is the pivot equation, and the coefficient a"33 is 

the pivo coeffic·e . To eliminate the term a"43x3 in Eq. (4.13d), the 

pivot equation is multiplied by m43 = a"43;1a'' 3 and then is subtracted 

from Eq. (4.13d): 

( " " ) - b" b" a 44 -m43a 34 X4 - 4 -m43 3 

a"'44 b"'4 
This is the end of Step 3. The system of equations is now in an upper tri­

angular form: 

a11x1 + a12X2 + a13x3 + a14X4 = b1 
0 +a2,2x2 + a2,3x3 + a2,4x4 = b2, 
0 + 0 + a'.J3x3 + a)4x4 = b'3 

0 + 0 + 0 + a��X4 = b'4' 

(4.14a) 
(4.14b) 

(4.14c) 

(4.14d) 

(4.14) 

The matrix form of the equations is shown in Fig. 4-14. Once trans­

formed to upper triangular form, the equations can be easily solved by 

using back substitution. The three steps of the Gauss elimination pro­

cess are illustrated together in Fig. 4-15. 
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Gauss elimination procedure
� Step 4: In this step, first three equation do not change.

� The terms that include the variable x3 in rest of the equations are eliminated.

� The third equation is multiplied by m43 = a′43/a
′
33 and subtracted
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tion, Eq. (4.12b), is multiplied by m42 = a'42/a'22 and then is subtracted 

from Eq. (4.12d): 
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Step 3: In this step, Eqs. (4.13a), (4.13b), and (4.13c) are not changed, 

and the term that includes the variable x3 in Eq. ( 4.13d) is eliminated. 

In this step, Eq. (4.13c) is the pivot equation, and the coefficient a"33 is 

the pivo coeffic·e . To eliminate the term a"43x3 in Eq. (4.13d), the 

pivot equation is multiplied by m43 = a"43;1a'' 3 and then is subtracted 
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The matrix form of the equations is shown in Fig. 4-14. Once trans­

formed to upper triangular form, the equations can be easily solved by 

using back substitution. The three steps of the Gauss elimination pro­

cess are illustrated together in Fig. 4-15. 
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Gauss elimination procedure
106 

all a12 a13 a14 X1 
a2I a22 a23 a24 x2 
a31 a32 a33 a34 X3 
a41 a42 a43 a44 X4 

Initial set of equations. 

0 
0 

0 a"33 a"34 
0 )JI' a"' l"l\3 44 

Step 3. 

Chapter 4 Solving a System of Linear Equations 

W. '  ' ' )l"jJ a 32 a 33 a 34 
>./_ ' ' ' 7"1.1 a 42 a 43 a 44 

Step 1. 

0 a'22 a'23 a'24 
0 0 a"33 a"34 
0 0 0 a"'44 

Equations in upper triangular form. 

all a12 a13 a14 
0 a'22 a'23 a'24 
0 w " " Y'i2 a 33 a 34 
0 >.!/ a" a" � 43 44 

Step 2. 

tNot 
element 

Figure 4-15: Gauss elimination procedure. 

Example 4-1 shows a manual application of the Gauss elimination 

method for solving a system of four equations. 

Example 4-1: Solving a set of four equations using Gauss elimination. 

Solve the following system of four equations using the Gauss elimination method. 

4x1-2x2- 3x3+6x4 = 12 

SOLUTION 

- 6x1 + 7 x2 + 6.5x3 - 6x4 = -6.5 
x1 + 7.5x2 + 6.25x3 + 5.5x4 = 1 6  

- 12x1 + 22x2 + 15.5x3 -x4 = 17 

The solution follows the steps presented in the previous pages. 

Step 1: The first equation is the pivot equation, and 4 is the pivot coefficient. 

Multiply the pivot equation by m21 = (-6)/ 4 = -1.5 and subtract it from the second equation: 

- 6x1+7x2 + 6.5x3 - 6x4 = -6.5 
(-1.5)(4x1 -2x2- 3x3 +6x4) = (-6/4) · 12 

Ox1 + 4x2 + 2x3 + 3x4 = 1 1.5 
Multiply the pivot equation by m31 = ( 1I4) = 0.25 and subtract it from the third equation: 

X1 + 7.5x2 + 6.25x3 + 5.5X4 = 1 6  
(0.25)(4x1-2x2- 3x3+6x4) = (l/4)·12 

Ox1 + 8x2 + 7x3 + 4x4 = 1 3  

Multiply the pivot equation by m41=(-12)/4 = -3 and subtract it from the fourth equation: 

- 12x1+22x2+15.5x3-x4 = 17 
(-3 )( 4x1 -2x2 - 3x3 + 6x4) = -3 · 12 

� Once transformed to upper triangular form, the equations can be easily solved
by using back substitution.
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Problem while applying the Gauss Elimination Method

� There are some potential difficulties when applying the Gauss elimination
method
� The pivot element is zero: Since the pivot row is divided by the pivot element, a

problem will arise during the execution of the Gauss elimination procedure if the
value of the pivot element is equal to zero. In a procedure called pivoting, the
pivot row that has the zero pivot element is exchanged with another row that
has a nonzero pivot element.

� The pivot element is small relative to the other terms in the pivot row:
Significant errors due to rounding can occur when the pivot element is small
relative to other elements in the pivot row.
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Gauss elimination with pivoting

� In the Gauss elimination procedure, the pivot equation is divided by the pivot
coefficient. This, however, cannot be done if the pivot coefficient is zero.

112 

After the first step, the second 

equation has a pivot element that 

is equal to zero. 

a11 a12 a13 a14 X1 

Q Q a'23 a'24 X2 

Q a'32 a'33 a'34 X3 

Q a'42 a'43 a'44 X4 

Using pivoting, the second 

equation is exchanged with 

the third equation. 

a11 a12 a13 a14 x1 

Q a'32 a'33 a'34 X2 

b' 4 

Figure 4-16: Illustration of 
pivoting. 

Chapter 4 Solving a System of Linear Equations 

4.3 GAUSS ELIMINATION WITH PIVOTING 

In the Gauss elimination procedure, the pivot equation is divided by the 

pivot coefficient. This, however, cannot be done if the pivot coefficient 

is zero. For example, for the following system of three equations: 

Ox1 + 2x2 + 3x3 = 46 
4x1 - 3x2 + 2x3 = 16 

2x1 + 4x2 - 3x3 = 12 

the procedure starts by taking the first equation as the pivot equation 

and the coefficient of x1, which is 0, as the pivot coefficient. To elimi­

nate the term 4x1 in the second equation, the pivot equation is supposed 

to be multiplied by 4/0 and then subtracted from the second equation. 

Obviously, this is not possible when the pivot element is equal to zero. 

The division by zero can be avoided if the order in which the equations 

are written is changed such that in the first equation the first coefficient 

is not zero. For example, in the system above, this can be done by 

exchanging the first two equations. 

In the general Gauss elimination procedure, an equation (or a row) 

can be used as the pivot equation (pivot row) only if the pivot coeffi­

cient (pivot element) is not zero. If the pivot element is zero, the equa­

tion (i.e., the row) is exchanged with one of the equations (rows) that 

are below, which has a nonzero pivot coefficient. This exchange of 

rows, illustrated in Fig. 4-16, is called pivoting. 

Additional comments about pivoting 
• If during the Gauss elimination procedure a pivot equation has a 

pivot element that is equal to zero, then if the system of equations 

that is being solved has a solution, an equation with a nonzero ele­

ment in the pivot position can always be found. 

• The numerical calculations are less prone to error and will have 

fewer round-off errors (see Section 4.2.1) if the pivot element has a 

larger numerical absolute value compared to the other elements in 

the same row. Consequently, among all the equations that can be 

exchanged to be the pivot equation, it is better to select the equation 

whose pivot element has the largest absolute numerical value. More­

over, it is good to employ pivoting for the purpose of having a pivot 

equation with the pivot element that has a largest absolute numerical 

value at all times (even when pivoting is not necessary). 

The addition of pivoting to the programming of the Gauss elimination 

method is shown in the next example. The addition of pivoting every 

time a new pivot equation is used, such that the pivot row will have the 
largest absolute pivot element, is assigned as an exercise in Problem 

4.21. 

� The division by zero can be avoided if the order in which the equations are
written is changed such that in the first equation the first coefficient is not
zero.

� For example, in the system above, this can be done by exchanging the first
two equations.
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Gauss elimination with pivoting

� All the coefficients of the linear system Ax = b can be stored in an
augmented matrix, denoted as [A | b], of dimension n× (n+ 1). The linear
system is represented as follows:

[A | b] =


a11 a12 · · · a1n b1
a21 a22 · · · a2n b2

...
...

...
...

an1 an2 · · · ann bn

 (29)

� The system Ax = b, with augmented matrix, can be solved by performing row
operations on the augmented matrix [A | b].
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Gauss elimination with pivoting

� Elementary Row Operations: The following operations applied to the
augmented matrix that yield an equivalent linear system.

1. Interchanges: The order of two rows can be changed.
2. Scaling: Multiplying a row by a nonzero constant.
3. Replacement: The row can be replaced by the sum of that row and a nonzero

multiple of any other row; that is: rowr = rowr −mrp × rowp

� Use these operations to obtain an equivalent upper-triangular system Ux = y
from a linear system Ax = b, where A is an n× n matrix.
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Example

Question: Express the following system in augmented matrix form and find an equivalent
upper-triangular system and the solution.

x1 +2x2 +x3 + 4x4 = 13
2x1 +0x2 +4x3 + 3x4 = 28
4x1 +2x2 +2x3 + x4 = 20
−3x1 +x2 +3x3 + 2x4 = 6

(30)
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Example

Question: Express the following system in augmented matrix form and find
an equivalent upper-triangular system and the solution.

0x1 +2x2 +4x3 + 3x4 = 28
2x1 +1x2 +x3 + 4x4 = 13
2x1 +4x2 +2x3 + x4 = 20
1x1 −3x2 +3x3 + 2x4 = 6

(31)
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Triangular Factorization
� The Gauss elimination method consists of two parts.

� The first part is the elimination procedure.
� In the second part, the equivalent system is solved by using back substitution

� The elimination procedure requires many mathematical operations and
significantly more computing time than the back substitution calculations.

� During the elimination procedure, the matrix of coefficients A and the vector
b are both changed.

� This means that if there is a need to solve systems of equations that have the
same left-hand-side terms (same coefficient matrix A) but different
right-hand-side constants (different vectors b ), the elimination procedure has
to be carried out for each b again.

� Ideally, it would be better if the operations on the matrix of coefficients A
were dissociated from those on the vector of constants b.
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Triangular Factorization
� In this way, the elimination procedure with A is done only once and then is

used for solving systems of equations with different vectors b.
� One option for solving various systems of equations

Ax = b

that have the same coefficient matrices A but different constant vectors b is
to first calculate the inverse of the matrix A . Once the inverse matrix A−1 is
known, the solution can be calculated by:

x = A−1b

� Calculating the inverse of a matrix, however, requires many mathematical
operations, and is computationally inefficient.
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Triangular Factorization

� A more efficient method of solution for this case is the LU decomposition
method.

� The LU decomposition method is a method for solving a system of linear
equations Ax = b

� In this method, the matrix of coefficients A is decomposed (factored) into a
product of two matrices L and U :

A = LU

where the matrix L is a lower triangular matrix and U is an upper triangular
matrix.

45/65 Dr. Kundan Kumar Numerical Methods (MTH4002)



Introduction Preliminaries Direct Method Gauss Elimination Pivoting Triangular Factorization Iterative Method Jacobi method Gauss-Seidel Iteration References

Triangular Factorization

� The nonsingular matrix A has a triangular factorization if it can be expressed as the product
of a lower-triangular matrix L and an upper-triangular matrix U :

A = LU (32)

In matrix form, this is written as
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 =


1 0 0 0

m21 1 0 0
m31 m32 1 0
m41 m42 m43 1




u11 u12 u13 u14

0 u22 u23 w24

0 0 u33 u34

0 0 0 u44

 (33)

The condition that A is nonsingular implies that ukk = 0 for all k. The notation for the
entries in L is mij .
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Triangular Factorization
� So, we have

LUx = b. (34)

� We can define y = Ux and then solve the two systems:

first solve Ly = b for y (35)

then solve Ux = y for x (36)

� In equation form, we must first solve the lower-triangular system

y1 = b1
m21y1 + y2 = b2
m31y1 +m32y2 + y3 = b3
m41y1 +m42y2 +m43y3 + y4 = b4

(37)
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Triangular Factorization

� Compute y1, y2, y3, and y4 and use them in solving the upper-triangular
system

a11x1 + u12x2 + u13x3 + u14x4 = y1

u22x2 + u23x3 + u24x4 = y2

u33x3 + u34x4 = y3

u44x4 = y4

(38)
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LU Decomposition Using the Gauss Elimination Procedure

Solve the following system of equation using the triangular factorization
method.

120 Chapter 4 Solving a System of Linear Equations 

4.5.1 LU Decomposition Using the Gauss Elimination 
Procedure 

When the Gauss elimination procedure is applied to a matrix [a], the 

elements of the matrices [ L] and [ U] are actually calculated. The upper 

triangular matrix [ U] is the matrix of coefficients [a] that is obtained at 

the end of the procedure, as shown in Figs. 4-8 and 4-14. The lower tri­

angular matrix [L] is not written explicitly during the procedure, but 

the elements that make up the matrix are actually calculated along the 

way. The elements of [L] on the diagonal are all 1, and the elements 

below the diagonal are the multipliers m;1 that multiply the pivot equa-

tion when it is used to eliminate the elements below the pivot coeffi­

cient (see the Gauss elimination procedure in Section 4.2). For the case 

of a system of four equations, the matrix of coefficients [a] is ( 4 x 4) , 

and the decomposition has the form: 

all a 12 a13 a14 1 0 0 0 all a12 a13 a14 

a11 a12 a13 a14 m21 1 0 0 0 a'
22 a'

23 a'
24 

(4.24) 
a31 a31 a33 a34 m31 m32 1 0 0 0 a"33 a"34 

a41 a42 a43 a44 m41 m42 m43 1 0 0 0 a"' 
44 

A numerical example illustrating LU decomposition is given next. It 

uses the information in the solution of Example 4- 1, where a system of 

four equations is solved by using the Gauss elimination method. The 

matrix [a] can be written from the given set of equations in the problem 

statement, and the matrix [ U] can be written from the set of equations at 

the end of step 3 (page 107). The matrix [ L] can be written by using the 

multipliers that are calculated in the solution. The decomposition has 

the form: 

I 4 -2 

-3 

6
1 -6 7 6.5 -6 

1 7.5 6.25 5.5 

-12 22 15.5 -1 

(4.25) I��� ! � �11� r� J2 

-3 

4 -0.5 1 0 0 0 4 

The decomposition in Eq. (4.25) can be verified by using MATLAB: 

>> L = [l,0,0,0;-1.5,1,0,0;0.25,2,l,0;-3,4,-0.5,l] 
L = 

1.0000 0 0 0 
-1. 5000 1.0000 0 0 

0.2500 2.0000 1.0000 0 
-3.0000 4.0000 -0.5000 1.0000 

>> u = [4,-2,-3,6;0,4,2,3;0,0,3,-2;0,0,0,4] 

120 Chapter 4 Solving a System of Linear Equations 

4.5.1 LU Decomposition Using the Gauss Elimination 
Procedure 

When the Gauss elimination procedure is applied to a matrix [a], the 

elements of the matrices [ L] and [ U] are actually calculated. The upper 

triangular matrix [ U] is the matrix of coefficients [a] that is obtained at 

the end of the procedure, as shown in Figs. 4-8 and 4-14. The lower tri­

angular matrix [L] is not written explicitly during the procedure, but 

the elements that make up the matrix are actually calculated along the 

way. The elements of [L] on the diagonal are all 1, and the elements 

below the diagonal are the multipliers m;1 that multiply the pivot equa-

tion when it is used to eliminate the elements below the pivot coeffi­

cient (see the Gauss elimination procedure in Section 4.2). For the case 

of a system of four equations, the matrix of coefficients [a] is ( 4 x 4) , 

and the decomposition has the form: 

all a 12 a13 a14 1 0 0 0 all a12 a13 a14 

a11 a12 a13 a14 m21 1 0 0 0 a'
22 a'

23 a'
24 

(4.24) 
a31 a31 a33 a34 m31 m32 1 0 0 0 a"33 a"34 

a41 a42 a43 a44 m41 m42 m43 1 0 0 0 a"' 
44 

A numerical example illustrating LU decomposition is given next. It 

uses the information in the solution of Example 4- 1, where a system of 

four equations is solved by using the Gauss elimination method. The 

matrix [a] can be written from the given set of equations in the problem 

statement, and the matrix [ U] can be written from the set of equations at 

the end of step 3 (page 107). The matrix [ L] can be written by using the 

multipliers that are calculated in the solution. The decomposition has 

the form: 

I 4 -2 

-3 

6
1 -6 7 6.5 -6 

1 7.5 6.25 5.5 

-12 22 15.5 -1 

(4.25) I��� ! � �11� r� J2 

-3 

4 -0.5 1 0 0 0 4 

The decomposition in Eq. (4.25) can be verified by using MATLAB: 

>> L = [l,0,0,0;-1.5,1,0,0;0.25,2,l,0;-3,4,-0.5,l] 
L = 

1.0000 0 0 0 
-1. 5000 1.0000 0 0 

0.2500 2.0000 1.0000 0 
-3.0000 4.0000 -0.5000 1.0000 

>> u = [4,-2,-3,6;0,4,2,3;0,0,3,-2;0,0,0,4] 
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Example

Solve the following system of equation using the triangular factorization
method.

x1 + 2x2 + 4x3 + x4 = 21
2x1 + 8x2 + 6x3 + 4x4 = 52
3x1 + 10x2 + 8x3 + 8x4 = 79
4x1 + 12x2 + 10x3 + 6x4 = 82

(39)

Given

A =


1 2 4 1
2 8 6 4
3 10 8 8
4 12 10 6

 =


1 0 0 0
2 1 0 0
3 1 1 0
4 1 2 1




1 2 4 1
0 4 −2 2
0 0 −2 3
0 0 0 −6

 = LU
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Example
Answer: Use the forward-substitution method to solve LY = B:

y1 = 21
2y1 + y2 = 52
3y1 + y2 + y3 = 79
4y1 + y2 + 2y3 + y4 = 82

Compute the values y1 = 21, y2 = 52− 2(21) = 10, y3 = 79− 3(21)− 10 = 6, and
y4 = 82− 4(21)− 10− 2(6) = −24, or Y = [21 10 6 − 24]′. Next write the system UX = Y :

x1 + 2x2 + 4x3 + x4 = 21
4x2 − 2x3 + 2x4 = 10

−2x3 + 3x4 = 6
−6x4 = −24

Now use back substitution and compute the solution x4 = −24/(−6) = 4,

x3 = (6− 3(4))/(−2) = 3, x2 = (10− 2(4) + 2(3))/4 = 2, and x1 = 21− 4− 4(3)− 2(2) = 1,

or X = [1 2 3 4]′.
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Iterative Method

� In iterative methods, an initial approximate solution is assumed and then used
in an iterative process for obtaining successively more accurate solutions.

� Two indirect (iterative) methods are
� Jacobi, and
� Gauss-Seidel
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Jacobi iterative method

Question: Consider the system of equations

4x− y + z = 7
4x− 8y + z = −21
−2x+ y + 5z = 15

(40)

Solve using Jacobi method.

These equations can be written in the form

x =
7 + y − z

4
y =

21 + 4x+ z

8
z =

15 + 2x− y

5
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Jacobi iterative method
� This suggests the following Jacobi iterative process:

xk+1 =
7 + yk − zk

4
yk+1 =

21 + 4xk + zk
8

zk+1 =
15 + 2xk − yk

5

� Let us start with P0 = (x0, y0, z0) = (1, 2, 2), then check that solution
converge to the solution (2, 4, 3).

� Substitute x0 = 1, y0 = 2, and z0 = 2 into the each equation and obtain the
new values

x1 =
7 + 2− 2

4
= 1.75 y1 =

21 + 4 + 2

8
= 3.375 z1 =

15 + 2− 2

5
= 3.00

(41)
The new point P1 = (1.75, 3.375, 3.00) is closer to (2, 4, 3) than P0.
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Jacobi iterative method
� Table shows the convergence

SEC. 3.6 ITERATIVE METHODS FOR LINEAR SYSTEMS 157

Table 3.2 Convergent Jacobi Iteration for the Linear
System (1)

k xk yk zk

0 1.0 2.0 2.0
1 1.75 3.375 3.0
2 1.84375 3.875 3.025
3 1.9625 3.925 2.9625
4 1.99062500 3.97656250 3.00000000
5 1.99414063 3.99531250 3.00093750
...

...
...

...

15 1.99999993 3.99999985 2.99999993
...

...
...

...

19 2.00000000 4.00000000 3.00000000

This suggests the following Jacobi iterative process:

(3)

xk+1 = 7+ yk − zk

4

yk+1 = 21+ 4xk + zk

8

zk+1 = 15+ 2xk − yk

5
.

Let us show that if we start with P0 = (x0, y0, z0) = (1, 2, 2), then the iteration in (3)
appears to converge to the solution (2, 4, 3).

Substitute x0 = 1, y0 = 2, and z0 = 2 into the right-hand side of each equation in (3)
to obtain the new values

x1 = 7+ 2− 2

4
= 1.75

y1 = 21+ 4+ 2

8
= 3.375

z1 = 15+ 2− 2

5
= 3.00.

The new point P1 = (1.75, 3.375, 3.00) is closer to (2, 4, 3) than P0. Iteration us-
ing (3) generates a sequence of points {Pk} that converges to the solution (2, 4, 3) (see
Table 3.2). �

This process is called Jacobi iteration and can be used to solve certain types of
linear systems. After 19 steps, the iteration has converged to the nine-digit machine
approximation (2.00000000, 4.00000000, 3.00000000).

Linear systems with as many as 100,000 variables often arise in the solution of
partial differential equations. The coefficient matrices for these systems are sparse;
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Jacobi iterative method

� Linear systems with as many as 100,000 variables often arise in the solution of
partial differential equations.

� The coefficient matrices for these systems are sparse; that is, a large
percentage of the entries of the coefficient matrix are zero.

� If there is a pattern to the nonzero entries (i.e., tridiagonal systems), then an
iterative process provides an efficient method for solving these large systems.

� Sometimes the Jacobi method does not work. Let see through an example.
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Jacobi iterative method

Question: Let the linear system defined in previous example be rearranged
as follows:

−2x+ y + 5z = 15
4x− 8y + z = −21
4x− y + z = 7

These equations can be written in the form

x =
−15 + y + 5z

3
y =

21 + 4x+ z

8
z = 7− 4x+ y

This suggests the following Jacobi iterative process:

xk+1 =
−15 + yk + 5zk

3
yk+1 =

21 + 4xk + zk
8

zk+1 = 7− 4xk + yk
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Jacobi iterative method

� If we start with P0 = (x0, y0, z0) = (1, 2, 2) then solution will diverge away
from the solution (2, 4, 3).

SEC. 3.6 ITERATIVE METHODS FOR LINEAR SYSTEMS 159

Table 3.3 Divergent Jacobi Iteration for the Linear
System (4)

k xk yk zk

0 1.0 2.0 2.0
1 −1.5 3.375 5.0
2 6.6875 2.5 16.375
3 34.6875 8.015625 −17.25
4 −46.617188 17.8125 −123.73438
5 −307.929688 −36.150391 211.28125
6 502.62793 −124.929688 1202.56836
...

...
...

...

Gauss-Seidel Iteration
Sometimes the convergence can be speeded up. Observe that the Jacobi iterative pro-
cess (3) yields three sequences {xk}, {yk}, and {zk} that converge to 2, 4, and 3, respec-
tively (see Table 3.2). Since xk+1 is expected to be a better approximation to x than xk ,
it seems reasonable that xk+1 could be used in place of xk in the computation of yk+1.
Similarly, xk+1 and yk+1 might be used in the computation of zk+1. The next example
shows what happens when this is applied to the equations in Example 3.26.

Example 3.28. Consider the system of equations given in (1) and the Gauss-Seidel itera-
tive process suggested by (2):

(7)

xk+1 = 7+ yk − zk

4

yk+1 = 21+ 4xk+1 + zk

8

zk+1 = 15+ 2xk+1 − yk+1

5
.

See that if we start with P0 = (x0, y0, z0) = (1, 2, 2), then iteration using (7) will converge
to the solution (2, 4, 3).

Substitute y0 = 2 and z0 = 2 into the first equation of (7) and obtain

x1 = 7+ 2− 2

4
= 1.75.

Then substitute x1 = 1.75 and z0 = 2 into the second equation and get

y1 = 21+ 4(1.75)+ 2

8
= 3.75.

Finally, substitute x1 = 1.75 and y1 = 3.75 into the third equation to get

z1 = 15+ 2(1.75)− 3.75

5
= 2.95.
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Criterion for convergence
� In view of examples solved using Jacobi iterative method, it is necessary to

have some criterion to determine whether the Jacobi iteration will converge.
Hence we make the following definition.

Definition
A matrix A of dimension n× n is said to be strictly diagonally dominant provided
that

|akk| >
n∑

j=1
j 6=k

|akj| for k = 1, 2, . . . , n (42)

� This means that in each row of the matrix the magnitude of the element on
the main diagonal must exceed the sum of the magnitudes of all other
elements in the row.
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Criterion for convergence

� The coefficient matrix of the linear system in Example solved using Jacobi is
strictly diagonally dominant because

In row 1 : |4| > | − 1|+ |1|
In row 2 : | − 8| > |4|+ |1|
In row 3 : |5| > | − 2|+ |1|

� The coefficient matrix A of the linear system in the Example, which is not
converged to the solution, is not strictly diagonally dominant because

In row 1 : | − 2| < |1|+ |5|
In row 2 : | − 8| > |4|+ |1|
In row 3 : |1| < |4|+ | − 1|
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Gauss-Seidel Iteration

� Since xk+1 is expected to be a better approximation to x than xk.

� It is reasonable that xk+1 could be used in place of xk in the computation of
yk+1.

� Similarly, xk+1 and yk+1 might be used in the computation of zk+1.

� Let us solve the previous example to understand the process of Gauss-Seidel
iteration.

� Gauss-Seidel Iteration considers the following system of equations for previous
example

xk+1 =
7 + yk − zk

4
yk+1 =

21 + 4xk+1 + zk
8

zk+1 =
15 + 2xk+1 − yk+1

5
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Gauss-Seidel Iteration
� If we start with P0 = (x0, y0, z0) = (1, 2, 2), then iteration using Gauss-Seidel

will converge to the solution (2, 4, 3).
� Substitute y0 = 2 and z0 = 2 into the first equation and obtain

x1 =
7 + 2− 2

4
= 1.75 (43)

� Then substitute x1 = 1.75 and z0 = 2

y1 =
21 + 4(1.75) + 2

8
= 3.75 (44)

� Finally, substitute x1 = 1.75 and y1 = 3.75 into the third equation to get

z1 =
15 + 2(1.75)− 3.75

5
= 2.95 (45)
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Gauss-Seidel Iteration

� The new point P1 = (1.75, 3.75, 2.95) is closer to (2, 4, 3) than P0 and is
better estimate than the value obtained using Jacobi iterative method.

160 CHAP. 3 SOLUTION OF LINEAR SYSTEMS AX = B

Table 3.4 Convergent Gauss-Seidel Iteration for the
System (1)

k xk yk zk

0 1.0 2.0 2.0
1 1.75 3.75 2.95
2 1.95 3.96875 2.98625
3 1.995625 3.99609375 2.99903125
...

...
...

...

8 1.99999983 3.99999988 2.99999996
9 1.99999998 3.99999999 3.00000000

10 2.00000000 4.00000000 3.00000000

The new point P1 = (1.75, 3.75, 2.95) is closer to (2, 4, 3) than P0 and is better than the
value given in Example 3.26. Iteration using (7) generates a sequence {Pk} that converges
to (2, 4, 3) (see Table 3.4). �

In view of Examples 3.26 and 3.27, it is necessary to have some criterion to de-
termine whether the Jacobi iteration will converge. Hence we make the following
definition.

Definition 3.6. A matrix A of dimension N × N is said to be strictly diagonally
dominant provided that

�(8) |akk | >
N∑

j=1
j �=k

|akj | for k = 1, 2, . . . , N .

This means that in each row of the matrix the magnitude of the element on the
main diagonal must exceed the sum of the magnitudes of all other elements in the row.
The coefficient matrix of the linear system (1) in Example 3.26 is strictly diagonally
dominant because

In row 1: |4| > | − 1| + |1|
In row 2: | − 8| > |4| + |1|
In row 3: |5| > | − 2| + |1|.

All the rows satisfy relation (8) in Definition 3.6; therefore, the coefficient matrix A
for the linear system (1) is strictly diagonally dominant.

The coefficient matrix A of the linear system (4) in Example 3.27 is not strictly
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