
Introduction Function with one Variable Golden ratio search Fibonacci Search Gradient and Newton’s Methods References

Numerical Methods
(MTH4002)

Lecture 06: Numerical Optimization

Dr. Kundan Kumar
Associate Professor
Department of ECE

Faculty of Engineering (ITER)
S‘O’A Deemed to be University, Bhubaneswar, India-751030

© 2020 Kundan Kumar, All Rights Reserved



Introduction Function with one Variable Golden ratio search Fibonacci Search Gradient and Newton’s Methods References

Introduction

� Root location and optimization are related in the sense that both involve
guessing and searching for a point on a function.

� The fundamental difference between the two types of problems is illustrated in
Figure.

� Root location involves searching for zeros
of a function or functions.

� In contrast, optimization involves searching
for either the minimum or the maximum of
a function.

� The optimum is the point where the curve
is flat.
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Introduction
� In mathematical terms, optimum corresponds to the x value where the

derivative f ′(x) is equal to zero.
� Additionally, the second derivative, f ′′(x), indicates whether the optimum is a

minimum or a maximum:
� If f ′′(x) < 0, the point is a maximum;
� If f ′′(x) > 0, the point is a minimum.

� All engineering and science students recall
working maxima-minima problems by
determining first derivatives of functions in
their calculus courses.
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Introduction

� Engineers must continuously design devices and products that perform tasks in
an efficient fashion. In doing so, they are constrained by the limitations of the
physical world. Further, they must keep costs down.

� Thus, they are always confronting optimization problems that balance
performance and limitations. Some common instances are listed in below.
� Design aircraft for minimum weight and maximum strength.
� Optimal trajectories of space vehicles.
� Design civil engineering structures for minimum cost.
� Machine learning weight optimization
� Cost/Error maximization/minimization.
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Fundamental elements of optimization problems
� The fundamental elements of optimization problems that will be routinely

confronted in engineering practice are

1. An objective function or cost
function

2. A number of design variables (real
number or integers).

3. Constraints that reflect the
limitations that need to be
considered while
minimizing/maximizing
objective/cost function.

maximize f(x, y) = xy

Subject to x+ 4y = 240
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Some important definitions

� Definition 01: The function f is said to have a local minimum value at x = p,
if there exists an open interval I containing p so that f(p) ≤ f(x) for all
x ∈ I. Similarly, f is said to have a local maximum value at x = p if
f(p) ≥ f(x) for all x ∈ I. If f has either a local minimum or maximum value
at x = p, it is said to have a local extremum at x = p.

� Definition 02: Assume that f(x) is defined on the interval I.

(i) If x1 < x2 implies that f(x1) < f(x2) for all x1, x2 ε I, then f is said to be
increasing on I.

(ii) If x1 < x2 implies that f(x1) > f(x2) for all x1, x2 ε I, then f is said to be
decreasing on I.
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First and Second Derivative Test

� First derivative test: Assume that f(x) is continuous on I = [a, b].
Furthermore, suppose that f ′(x) is defined for all x ∈ (a, b), except possibly at
x = p

(i) If f ′(x) < 0 on (a, p) and f ′(x) > 0 on (p, b), then f(p) is a local minimum.
(ii) If f ′(x) > 0 on (a, p) and f ′(x) < 0 on (p, b), then f(p) is a local maximum.

� Second derivative test: Assume that f is continuous on [a, b] and f ′ and f ′′

are defined on (a, b). Also, suppose that p ∈ (a, b) is a critical point where
f ′(p) = 0.

(i) If f ′′(p) > 0, then f(p) is a local minimum of f .
(ii) If f ′′(p) < 0, then f(p) is a local maximum of f .
(iii) If f ′′(p) = 0, then this test is inconclusive.
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Example

Use the second derivative test to classify the local extrema of f(x) = x3 +
x2 − x+ 1 on the interval [−2, 2].
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Minimum or maximum of a single variable function
� Recall that root location was complicated by the fact that several roots can

occur for a single function.
� Similarly, both local and global optima can occur in optimization. Such cases

are called multimodal.
� In almost all instances, we will be interested in finding the absolute highest or

lowest value of a function.
� Thus, we must take care that we do not mistake a local result for the global

optimum.
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Optimization in one dimension

� Single-variable optimization has the goal of finding the value of x that yields
an extremum, either a maximum or minimum of f(x).

� Bracketing methods
� Golden-Ratio Search and Fibonacci Search are examples of a bracketing

methods.
� In these methods, the minimum of f(x) is found out for a given interval by

evaluating the function many times and searching for a local minimum.

� Open methods
� Another method is based on the idea from calculus that the minimum or

maximum can be found by solving f ′(x) = 0.
� One version of this approach—Newton’s method will be discussed.
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Golden Ratio Search

� The golden-ratio search is a simple, general-purpose, single-variable search
technique.

� For simplicity, we will focus on the problem of finding a maximum.

� When we will discuss the computer algorithm, we will describe the minor
modifications needed to simulate a minimum.

� We can start by defining an interval that contains a single answer. That is,
the interval should contain a single maximum, and hence is called unimodal.

� We can adopt the nomenclature, where xl and xu defined the lower and upper
bounds, respectively, of such an interval.
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Golden Ratio Search

� Rather than using only two function values (which are sufficient to detect a
sign change, and hence a zero), we would need third function values to detect
whether a maximum occurred.

� Thus, an additional point within the interval has to be chosen.

� Next, we have to pick a fourth point. Then the test
for the maximum could be applied to discern
whether the maximum occurred within the first
three or the last three points.

� The key to making this approach efficient is the
wise choice of the intermediate points.
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Golden Ratio Search

� This goal can be achieved by specifying that the following two conditions hold.

`0 = `1 + `2 (1)

`1
`0

=
`2
`1

(2)

(i) The first condition specifies that the sum of the
two sublengths `1 and `2 must equal the original
interval length.

(ii) The second says that the ratio of the lengths must
be equal.
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Golden Ratio Search
� Equation (1) can be substituted into Eq. (2), we get

`1
`1 + `2

=
`2
`1

� If the reciprocal is taken and R = `2/`1, we arrive at

1 +R =
1

R

⇒ R2 +R− 1 = 0

� Which can be solved for the positive root

R =
−1 +

√
1− 4(−1)
2

=

√
5− 1

2
= 0.61803 . . .

� This value, which has been known since antiquity, is called the Golden Ratio.
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Golden Ratio Search

� Because it allows optima to be found efficiently, it is the key element of the
golden-section method we have been developing conceptually.

� Now let us derive an algorithm to implement this approach on the computer.
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Golden Ratio Search Algorithm
(1) Start with two initial guesses, xl and xu, that bracket one local

extremum of f(x). Next, two interior points x1 and x2 are chosen
according to the golden ratio.

d =
√
5−1
2 (xu − xl)

x1 = xl + d
x2 = xu − d

(3)

(2) The function is evaluated at these two interior points. Two results can

occur:

(i) If f(x1) > f(x2) then the domain of x to the left of x2, from xl to
x2, can be eliminated because it does not contain the maximum.
For this case, x2 becomes the new xl for the next iteration.

(ii) If f(x2) > f(x1), then the domain of x to the right of x1, from x1
to xu would have been eliminated. In this case, x1 becomes the
new xu for the next iteration.
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Real benefit from the use of the golden ratio

� Because the original x1 and x2 were chosen using the golden ratio, we do not
have to recalculate all the function values for the next iteration.

� The old x1 becomes the new x2. This means that we already have the value
for the new f(x2), since it is the same as the function value at the old x1.

� To complete the algorithm, we now only need to determine the new x1. This
is done with the same proportionality as before,

x1 = xl +

√
5− 1

2
(xu − xl) (4)

A similar approach would be used for the alternate case where the optimum
fell in the left subinterval.
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Example

Use the golden-section search to find the maximum of

f(x) = 2 sinx− x2

10

within the interval xl = 0 and xu = 4.
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Fibonacci Search

� Fibonacci search method differs from the golden ratio method in that the
value of r is not constant on each subinterval.

� Additionally, the number of subintervals (iterations)is predetermined and
based on the specified tolerances.

F0 = 0, F1 = 1
Fn = Fn−1 + Fn−2

(5)

n = 2, 3, . . . . Thus the Fibonacci numbers are

1, 2, 3, 5, 8, 13, 21, . . .
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Fibonacci Search

� Assume we are given a function f(x) that
is unimodal on the interval [a0, b0] .

� As in the golden ratio search a value
r0 (1/2 < r0 < 1) is selected so that both
of the interior points c0 and d0 will be used
in the next subinterval and there will be
only one new function evaluation.

� Without loss of generality assume that
f (c0) > f (d0) . It follows that
a1 = a0, b1 = d0, and d1 = c0.
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Fibonacci Search

� If there is to be only one new function evaluation, then we select
r1 (1/2 < r1 < 1) for the subinterval [a1, b1] , such that

d0 − c0 = b1 − d1
(2r0 − 1) (b0 − a0) = (1− r1) (b1 − a1)
(2r0 − 1) (b0 − a0) = (1− r1) (r0 (b0 − a0))

2r0 − 1 = (1− r1) r0

r1 =
1− r0
r0
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Fibonacci Search

� Substituting r0 = Fn−1/Fn, n ≥ 4, into this last equation yields

r1 =
1− Fn−1

Fn

Fn−1

Fn

=
Fn − Fn−1

Fn−1

=
Fn−2

Fn−1

� Since, by equation (5), Fn = Fn−1 + Fn−2, it follows that the Fibonacci search
can be begun with r0 = Fn−1/Fn and continued using rk = Fn−1−k/Fn−k for
k = 1, 2, . . . , n− 3.

� Note that rn=3 = F2/F3 = 1/2, thus no new points can be added at this
stage. Therefore, there are a total of (n− 3)+ 1 = n− 2 steps in this process.
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Fibonacci Search

� The (k + 1)st subinterval is obtained by reducing the length of the kth
subinterval by a factor of rk = Fn−1−k/Fn−k. The length of the last
subinterval is

Fn−1Fn−2 · · ·F2

FnFn−1 · · ·F3

(b0 − a0) =
F2

Fn

(b0 − a0)

=
1

Fn

(b0 − a0) =
b0 − a0
Fn
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Fibonacci Search
� If the abscissa of the minimum is to be found with a tolerance of ε, then we

need to find the smallest value of n such that
b0 − a0
Fn

< ε or Fn >
b0 − a0

ε
(6)

The interior points ck and dk of the k th subinterval [ak, bk] are found, as
needed, using the formulas

ck = ak +

(
1− Fn−k−1

Fn−k

)
(bk − ak) (7)

dk = ak +
Fn−k−1

Fn−k
(bk − ak) (8)

� Note that the value of n used in formulas (7) and (8) is found using inequality
(6).
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Fibonacci Search

� Each iteration requires the determination of two new interior points, one from
the previous iteration and the second from formula (7) and (8). When
r0 = F2/F3 = 1/2 the two interior points will be concurrent in the middle of
the interval. To distinguish the two interior points a small distinguishability
constant, e, is introducted. Thus when formula (7) and (8) is used, the
coefficients of (bk − ak) are 1/2− e or 1/2 + e, respectively.
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Example

Find the minimum of the function f(x) = x2 − sin(x) on the interval [0,1]
using the Fibonacci search method. Use a tolerance of ε = 10−4 and the
distinguishability constant e = 0.01

Solution:
The smallest Fibonacci number satisfying

Fn >
b0 − a0

ε
=

1− 0

10−4
= 10, 000

is F21 = 10, 946. Thus n = 21.
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Exmple
Given a0 = 0 and b0 = 1. Formulas (7) and (8) yield

c0 = 0 +
(
1− F20

F21

)
(1− 0) ≈ 0.3819660

d0 = 0 + F20

F21
(1− 0) ≈ 0.6180340

Then set a1 = a0, b1 = d0, and d1 = c0, since f(0.3819660) = −0.2268475 and
f(0.6180340) = −0.1974679 (f (d0) ≥ f (c0)) .

The new subinterval containing the abscissa of the minimum of f is
[a1, b1] = [0, 0.6180340]. Now use formula (7) to calculate the interior point c1 :

c1 = a1 +

(
1− F21−1−1

F21−1

)
(b1 − a1)

= 0 +

(
1− F19

F20

)
(0.6180340− 0) ≈ 0.2360680
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Example
Now compute and compare f (c1) and f (d1) to determine the new subinterval
ba2, b2c , and continue the iteration process. Some of the computations are shown
in the Table.
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Example
At the seventeenth iteration the interval has been narrowed down to [a17, b17] =
[0.4501188, 0.4503928], where c17 = 0.4502101, d17 = 0.4503105, and
f (d17) ≥ f (c17) Thus [a18, b18] = [0.4501188, 0.4503015] and d18 = 0.4502101.
At this stage the multiplier is r18 = 1− F2/F3 = 1− 1/2 = 1/2 and the
distinguishability constant e = 0.01 is used to calculate c18 :

c18 = a18 + (0.5− 0.01) (b18 − a18)
= 0.4501188− 0.49(0.450315− 0.4501188)

≈ 0.4502083

since f (d18) ≥ f (c18) , the final subinterval is
[a19, b19] = [0.4501188, 0.4502101]. This interval has width 0.0000913 . We
choose to report the abscissa of the minimum as the midpoint of this interval.
Therefore, the minimum value is f(0.4501645) = −0.2324656
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Example

Remarks

� Both the Fibonacci and golden ratio search methods can be applied in cases
where f(x) is not differentiable. It should be noted that when n is small the
Fibonacci method is more efficient than the golden ratio method. However,
for n large the two methods are almost identical.
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Gradient and Newton’s Methods
� Recall that the Newton-Raphson method of is an open method that finds the

root x of a function such that f(x) = 0. The method is summarized as

xi+1 = xi −
f (xi)

f ′ (xi)

A similar open approach can be used to find an optimum of f(x) by defining a
new function, g(x) = f ′(x). Thus, because the same optimal value x∗ satisfies
both

f ′ (x∗) = g (x∗) = 0

we can use the following,

xi+1 = xi −
f ′ (xi)

f ′′ (xi)

as a technique to find the minimum or maximum of f(x).
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Gradient and Newton’s Methods

� Newton’s method is an open method similar to Newton-Raphson because it
does not require initial guesses that bracket the optimum.

� In addition, it also shares the disadvantage that it may be divergent.

� Finally, it is usually a good idea to check that the second derivative has the
correct sign to confirm that the technique is converging on the result you
desire.
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Example

Use Newton’s method to find the maximum of

f(x) = 2 sinx− x2

10

with an initial guess of x0 = 2.5.

Solution
The first and second derivatives of the function can be evaluated as

f ′(x) = 2 cosx− x
5

f ′′(x) = −2 sinx− 1
5
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Example

which can be substituted into governing equation to give

xi+1 = xi −
2 cosxi − (xi/5)

−2 sinxi − (1/5)

Substituting the initial guess yields

x1 = 2.5− 2 cos(2.5)− (2.5/5)

−2 sin(2.5)− (1/5)
= 0.99508

which has a function value f(x1) as 1.57859.
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Example
The second iteration gives

x1 = 0.995− 2 cos(0.995)− (0.995/5)

−2 sin(0.995)− (1/5)
= 1.46901

which has a function value f(x2) 1.77385 . The process can be repeated, with
the results tabulated below:
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