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Introduction

® In many scientific and engineering experients, observations of physical quantities are
measured and recorded.

m For example, the strength of many metals depends on the size of the grains.
m Testing specimens with different grain sizes yields a discrete set of numbers (d-
average grain diameter, o, - yield strength) as
Table 6-1: Strength-grain size data.
d(mm) | 0.005 | 0.009 | 0.016 | 0.025 | 0.040 | 0.062 | 0.085 | 0.110
oy (MPa) | 205 150 135 97 89 80 70 67

® The experimental records are typically referred to as data points.
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Introduction

m Often the data is used for developing, or evaluating, mathematical formulas
(equations) that represent the data.

® This is done by curve fitting in which a specific form of an equation is assumed, or
pro vided by a guiding theory, and then the parameters of the equation are
determined such that the equation best fits the data points.

m Curve fitting can be carried out with many types of functions and with polynomials
of various orders.

® Sometimes the data points are used for estimating the expected values between the
known points, a procedure called interpolation,

® For predicting how the data might extend beyond the range over which it was
measured, a procedure called extrapolation.
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Curve Fitting
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Curve Fitting
oe

Fitting

m Curve fitting is a procedure in which a mathematical formula (equation) is used to

best fit a given set of data points.
® The objective is to find a function that fits the data points overall. This means that

the function does not have to give the exact value at any single point, but fits the

data well overall.
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® A curve that shows the best fit of a power function
( o0 = Cd™) to the data points.

® |t can be observed that the curve fits the general
trend of the data but does not match any of the
data points exactly.

m Generally, all experimental measurements have
built-in errors or uncertainties, and requiring a curve
fit to go through every data point is not beneficial.
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Curve Fitting with a linear equation
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Curve Fitting with a linear equation

m Curve fitting using a linear equation (first degree polynomial) is the process by
which an equation of the form:

Yy = a1x + ag
is used to best fit given data points.

® This is done by determining the constants al and a0 that give the smallest error
when the data points are substituted in the equation.

Yy Yi
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Measuring How Good Is a Fit

® The fit between given data points and an approximating linear function is
determined by first calculating the error, also called the residual, which is the
difference between a data point and the value of the approximating function, at

each point.

® Subsequently, the residuals are used for
calculating a total error for all the
points.

® The residual r; at a point, (z;,¥;), is
the difference between the value y; of
the data point and the value of the
function f(z;) used to approximate the
data points:
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Measuring How Good Is a Fit

® A criterion that measures how well the approximating function fits the given data
can be obtained by calculating a total error E in terms of the residuals.

n n
E=Y ri=)Y lyi— (mz; +ao)]
i=1 i=1
n n
or E=>Y |ri| =Y |yi — (@1 + ao)|
i=1 =1

n n
or |E=D 1= lyi— (@i +ao)
i=1 =1

® A smaller E in indicates a better fit. This measure can be used to evaluate or
compare proposed fits, and last egation can be used to calculate the coefficients ay
and ag in the linear function.
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Linear Least-Squares Regression

® An experiment produces a set of data points (z1,¥1),. .., (Zn, yn), Where are
abscissas {xz} are distint.

® One goal of numerical methods is to determine a formula y = f(z) that relates
these variables.

[ = f(z) = a1x+ao}

® |inear least-squares regression is a procedure in which the coefficients a; and ag of
a linear function y = a1x + ag are determined such that the function has the best
fit to a given set of data points.

B The best fit is defined as the smallest possible total error that is calculated by
adding the squares of the residuals

E = [y — (a1 + a))?
i=1
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Linear Least-Squares Regression

® Take the partial derivative of of above equation, we get

® Above two equations are a system of two linear equations for the unknows a; and
ag, and can be rewritten in the form as

nay + (ijal = Zy,

i=1 i=1
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Linear Least-Squares Regression

m Solution can be written as

oo B8

20 N 0 0D 05 03

n

nix,z—[z T n_n x,’-[ZxJz

i=1 i=1 i=1

® The values of a; and ag in the equation y = a1z + ag that has the best fit to n
data points (x4, y;)
aj = nS,,—S,S, i = _8.,5,=5,5,
nSx.t - (Sx)2 nSxx = (Sx)2

where,

X
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Curve Fitting with Nonlinear Equation
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Curve Fitting with Nonlinear Equation

® Many situations in science and engineering show that the relationship between the
quantities that are being considered is not linear.

® For example, the data points meansured in RC circuit.

Nonlinear function

Ve (0 ‘[

R T“’}é"‘ 1

5 =0 o Linear function [_ ——

10 20 30 4(g)

® |t is obvious from the plot that curve fitting the data points with a nonlinear
function gives a much better fit than curve fitting with a linear function.
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® There are many kinds of nonlinear functions which can be used with linear-squares
regression method to determine the coefficients that gives the best fit.
m Examples of nonlinear functions used for curve fitting in the present section are:

y = bx" (power function)

y = be™ ory = b10m* (exponential function)
=1 . .

S By 3 (reciprocal function)

® |n order to be able to use linear regression, the form of a nonlinear equation of two
variables is changed such that the new form is linear with terms that contain the
original variables.

m For example, the power function y = bx™ can be put into linear form by taking the
natural logarithm (In) of both sides:

In(y) = In(bx™) = mln(x)+ In(d)
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Writing a nonlinear equation in linear form

® This equation is linear for In(y) in terms In(x). The equation is in the form
Y =alX + a0 where Y = In(y), al = m, X = In(z), and a0 = In(b):

In(y) = min(x) + In(b)

® This means that linear least-squares regression can be used for curve fitting an
equation of the form y = ba™ to a set of data points z;, y;.

® Once a1 and ag are known, the constants b and m in the exponential equation are
calculated by:
m=a and b=e™
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Values for
linear Plot where data
Nonlinear |Linear form Relationship to least- points appear to fit a
equation Y = a X tag squares straight line
regression
y = bxm In(y) = mln(x) +In() |Y = In(»), X = In(x) [In(x;) and |y vs. x plot on logarith-
ay =m, ay = In(b) () mic y and x axes.
! In(y) vs. In(x) plot on
linear x and y axes.
y = bem In(y) = mx+ In(b) Y=In(y), X=x |x and y vs. x plot on logarith-
a=m, a =@ |n@) mic y and linear x axes.
! In(y) vs. x plot on lin-
ear x and y axes.
y = blom |log(y) = mx+log(b)  |¥ =log(y), X =x |x and ¥ vs. x plot on logarith-
ay =m, ay=log(b) |log(y;) mic y and linear x axes.
log(y) vs. x plot on lin-
ear x and y axes.
g= L o oty v=1 x-=x x; and 1/y vs. x plot on linear
mx+b | ¥ 7 1/y; x and y axes.
a =m, ay= £
y = mx 1_b1,1 Y=l, o= 1/x; and 1/y vs. 1/x plot on
b+x y mx m Y x 1/y, linear x and y axes.
b 1 '
CTw Y
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How to choose an appropriate nonlinear function for curve fitting
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Curve fitting with quadratic and higher order polynomials
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Curve fitting with quadratic and higher order polynomials

Background:

® Polynomials are functions that have the form:
f(@) = anz™ + an 12"+ Fag

The coefficients a,, an_1,...,a1,ag are real numbers, and n, which is a
nonnegative integer, is the degree, or order, of the polynomial.

® A plot of the polynomial is a curve. A first-order polynomial is a linear function,
and its plot is a straight line. Higher-order polynomials are nonlinear functions, and
their plots are curves.

® A quadratic (second-order) poly nomial is a curve that is either concave up or down
(parabola).

® A third-order polynomial has an inflection point such that the curve can be con
cave up (or down) in one region, and concave down (or up) in another.
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Curve fitting with polynomials of different order

:; 1st degree polynomial (-] :0 2nd degree polynomial 1(2) 3rd degree polynomial
8 8 8
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Curve fitting with quadratic and higher order polynomials

® A given set of n data points can be curve-fit with polynomials of different order up
to an order of (n — 1).

® The coefficients of a polynomial can be determined such that the polynomial best
fits the data by minimizing the error in a least squares sense.

= For n points the polynomial that passes through all of the points is one of order
(n —1). Even though the high-order polynomial gives the exact values at all the
data points, it cannot be used reliably for interpolation or extrapolation.
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Polynomial regression

® Polynomial regression is a procedure for determining the coefficients of a polynomial
of a second degree, or higher, such that the polynomial best fits (minimizing the
total error) a given set of data points.

® |f the polynomial, of order m, that is used for curve fitting is:

f(z) = amz™ + Am12™ V4 .+ arz + ag
® Then, for a given set of n data points {(x;,y;)}!'_; (m is smaller than n — 1), the
total error is given by:

2
E = Z (amx” + am— 1xm1—|—...+a1xi+ao)]

® The function F has a minimum at the values of ag through a.,, where the partial
derivatives of E with respect to each of the variables is equal to zero.
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Polynomial regression

m For the simplicity, let us consider the case of m = 2 (quadratic polynomial)

n
E=Y" [y — (a22? + a1 + ap))’
=1

® Taking the partial derivatives with respect to a0, al, and a2 , and setting them
equal to zero gives:

E _ _,

n
D (yimax?-ax-ag)x; = 0
Oa, i=1
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Polynomial regression

® The solution of the system of equations gives the values of the coefficients a0, al,
and a2 of the polynomial y = agm? + a1x; + ag that best fits then data points

{(i, i) Yier.

® The coefficients for higher-order polynomials are derived in the same way.
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Interpolation
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Interpolation

® |nterpolation is a procedure for estimating a value between known val ues of data
points.

® |t is done by first determining a polynomial that gives the exact value at the data
points, and then using the polynomial for calculating values between the points.

30 ® When a small number of points is involved, a
25 single polynomial might be sufficient for
ﬂ;: 20 interpola tion over the whole domain of the
‘-%-’ 15 data points.
£ 10 m Often, however, when a large number of
- 5 points are involved, different polynomials are
used in the intervals between the points in a

process that is called spline inter polation.
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Interpolation
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15
1st degree polynomial
10 ¥=0.667x+1.333
>
5
0
0 5 10 15
X
15
»=0.0365x3-0.979x2+5.15x-2.39
10
>
5
3rd degree polynomial
00 5 10 15

5 y=-0.167x2+3x-0.833
2nd degree polynomial
GO 5 10 15

y=-0.0103x4+0.3x3-2.86x2+10.19x-5.62

4th degree polynomial

g 10 15

Kundan Kumar

B As discussed in curve
fitting, for any number of
points n there is a
polynomial of order n — 1
that passes through all of
the points.

m First, second, third, and
fourth-order polynomials
connect two, three, four,
and five points,
respectively.
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Interpolation using a single polynomial

® |nterpolation with a single polynomial gives good results for a small number of
points.

® For a large number of points the order of the polynomial is high, and although the
polynomial passes through all the points, it might deviate significantly between the

points.
m Consequently, interpolation with a single polynomial
12 might not be appropriate for a large number of
10} 10th degree polynomial .
; points.
=6 m For a large number of points, better interpolation
4 can be done by using piecewise (spline)
2 interpolation in which different lower-order
O e & 0 12 polynomials are used for interpolation between

x different points of the same set of data points.
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m For a given set of n points, only one (unique) polynomial of order m (m =n — 1)
passes exactly through all of the points.

® The polynomial, however, can be written in different mathematical forms.

® Three forms of polynomials are

0 Standard,
0 Lagrange, and
O Newton's

® Standard form of an mth-order polynomial is:
f(x) = amz™ + 12"V + . 4 arx + ag

m The coefficients in this form are determined by solving a system of m + 1 linear
equations.

® The equations are obtained by writing the polynomial explicitly for each point
(substituting each point in the polynomial). (Refer to curve fitting)
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Lagrange Interplating Polynomials
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Lagrange Interplating Polynomials

® | agrange interpolating polynomials are a particular form of polynomi als that can
be written to fit a given set of data points by using the val ues at the points.
® The polynomials can be written right away and do not require any preliminary
calculations for determining coefficients.
® |agrange polynomials
0 First-order Lagrange polynomial

0 Second-order Lagrange polynomial
0 General form of an n — 1 order Lagrange polynomial
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First order Lagrange polynomial

® For two points, (z1,y1), and (z2,y2), the first-order Lagrange polynomial that
passes through the points has the form:

f(@) =y =ai(z —x9) + az(x — 11)

® Substitute the two point in the above equation

ﬂx)l (x- xz) (x %)

i S Gy 1 gy 22

V2 = ai(x—x) ta(x—-x) or a =

m Substitute a; and as back
(xn 1)

I
i
i
I
i 1) = (x—x)) +(x—xl)
i
i

| -t p-x)
1 v_’_i f(x) = (}’2 yl)x+x2y1—x1y2
-x1) (xy—x1)
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Second-order Lagrange polynomial

m For three points, (21,¥1), (2,y2), and (z3,ys3), the second-order Lagrange
polynomial that passes through the points has the form:

® Once the coefficients are determined such that the polynomial passes through the
three points, the polynomial (quadratic form) is:

_ (r=x)(x—x3) n (x—x1)(x—x3) n (x—x1)(x—x)
(51— %) (%1=%3) " (g x7) (5=%3) " 2 (32 ) (X5—x5) "

S(x)

® Above equation can also be rewritten in the standard form f(z) = asz? + a1 + ao.
(Home work to derive the standard form)
_ Gxp)xxs) (-, )(-x5)
So= (¥p=xp)lxy-x5) At +("2‘J‘1)(“'2’53) >

e

. 3
fx) (X3~ (%37%2)
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General form of Lagrange polynomial

® the general formula of an n — 1 order Lagrange polynomial that passes through n

points (z1,vy1), (z2,92), ... , (Tn,yn) is:
(= xp)(x—x3)... (x—x,) (x—x1)(x—x3)...(x—x,)
N e M ey e R e L

(x=x)(x=x3) ... (x=X; ) (¥=X;4 1) .. (x—x,)

(i) (= X) - (=%, ) (X=X 1) - (%= X)

(x=x)(x=xp)...(x=x,_1)

(x,=x1) (X, x3) ... (X=X, _1)

+ ...+

i

n

n —
where L,(x) = H ((;C _);)) are called the Lagrange functions
jE1vE
j#i
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Conclusive remarks

B The spacing between the data points does not have to be equal.

m For a given set of points, the whole expression of the interpolation polynomial has
to be calculated for every value of x. In other words, the interpolation calculations
for each value of x are independent of others.

m Different from other forms where once the coefficients of the polynomial are
determined, they can be used for calculating different values of x.

® |f an interpolated value is calculated for a given set of data points, and then the
data set is enlarged to include additional points, all the terms of the Lagrange
polynomial have to be calculated again.

® As discussed in next topic, this is different from Newton's polynomials where only
the new terms have to be calculated if more data points are added.
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Newton’s Interpolating Polynomials
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Newton's Interpolating Polynomials

®m Newton's interpolating polynomials are a popular means of exactly fitting a given
set of data points.

® The general form of an n — 1 order Newton's polynomial that passes through n
points is:

fx)=a1+as(z—x1)tas(z—z1)(x—22)+...Fap(z—x1)(x—22) ... (T—Tp—1)

® The special feature of this form of the polynomial is that the coeffi cients al
through an can be determined using a simple mathematical procedure.

m (Determination of the coefficients does not require a solu tion of a system of n
equations.)

® Once the coefficients are known, the polynomial can be used for calculating an
interpolated value at any .
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Newton's Interpolating Polynomials

= Newton's interpolating polynomials have additional desirable features that make
them a popular choice.

® The data points do not have to be in descending or ascending order, or in any order.

® Moreover, after the n coefficients of an n — 1 order Newton's interpolating

polynomial are determined for n given points, more points can be added to the data
set and only the new additional coefficients have to be determined.
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First-order Newton's polynomial

® For two given points, (z1,y1) and (x2,y2), the first-order Newton's polynomial has
the form:

f(z) = a1 + az(z — 1)
It is an equation of a straight line that passes through the points.

0 The coefficients a; and as can be calculated by

Yy fo)=artayx-x) considering the similar triangles
Y2 DE _4B . fM)-» _¥-»n
f( ) CE CB’ xX—x; Xy — X,
o0 —
fG) = 220Gy
X2 =%
N a =y , and a, =222
X=X
X
g O The coefficient as is the slope of the line that connects

the two points.
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Second-order Newton's polynomial

m For three given points, (z1,y1), (z2,%2), and (x3,ys3), the second-order Newton's
polynomial has the form:

f(z) = a1 + ax(x — x1) + az(x — x1)(x — z2)

It is an equation of a parabola that passes through the three points.

fx)=a,+a,(x-x,) m The coefficients a1, as, and a3 can be determined
YA o (x-x, X(x-X,) by substituting the three points in above equation.
Vs ® Substituting z = 7 and f(z1) =yl gives: a; = y;

]
I
f(x) ! ® Substituting the second point, x = x5 and

JYanemm e | i i f(xz2) = y2, (and a1 = y1) in above eq. gives:
L1

N Pl Y=

| || ! x Y2 = nitap(x-x) or a; = :_xl

e SOoRk R 2 7
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Second-order Newton's polynomial

® Substituting the third point, z = z3 and f(z3) = y3 (as well as a; = y; and

az = 22-21) in f(x) that gives:

Above equation can be solved for as and rearranged to give (after some algebra):

Y3=Vy Va1
G B X3 =Xy Xp— X
s E
(x3—xy)

® The coefficients al, and a2 are the same in the first-order and sec ond-order
polynomials. This means that if two points are given and a first-order Newton's
polynomial is fit to pass through those points, and then a third point is added, the
polynomial can be changed to be of sec ond-order and pass through the three

points by only determining the value of one additional coefficient.
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Third-order Newton's polynomial

m For four given points, (z1,y1), (x2,v2), (z3,y3) and (x4, y4), the third-order
Newton's polynomial that passes through the four points has the form:

f(x)=y=art ay(x—x;) +az(x—x1) (x— x) + a4 (x—x) (x—x,) (x—x3)

® The formulas for the coefficients al, a2, and a3 are the same as for the second
order polynomial. The formula for the coefficient a4 can be obtained by
substituting (z4,y4), in Eq and solving for a4, which gives:

(y4—y3_y3—y2) (J’3—J’2_J’2—J’1)
Xq4—X3 X3—Xy X3 =Xy Xp—Xp
(x4—x;) (x3—x;)
(x4—x7)

a4
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A general form of Newton's polynomial and its coefficients

® There is common pattern in all equations that can be clarified by defining so called
divided differences.

® For two points, (z1,41), and (z2,y2), the first divided difference, written as
f[x2, xi], is defined as the slope of the line connecting the two points:

® The first divided difference is equal to the coefficient as.
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A general form of Newton's polynomial and its coefficients

m For three points (x1,y1), (z2,y2), and (3, y3) the second divided difference, written
as f[xs,z2,x1], is defined as the difference between the first divided differences of
points (x3,y3), and (x2,y2), and points (x2,¥2), and (x1,y1) divided by (z3 — z1):

® The second divided difference is thus equal to the coefficient ag
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A general form of Newton's polynomial and its coefficients

B For four points (x1,41), (z2,y2), (z3,y3), and (x4, y4) the third divided difference, written
as flzq, x3, 22, 21], is defined as the differ ence between the second divided differences of
points (z2,y2), (v3,y3) and (z4,y4), and points (z1,y1), (x2,y2), and (x3,ys) divided by

($4 B 171): _ f[x4,x3,x2]ff [x3, x5, 1]

Xgs Xqs Xy X =
S Dt 5y 3] o

S 1xg 3] = f [x3, %3] f [x3, %3] = f [ x5, %]

(x4—x1)

Ya=Y3 V3=Y2 Y3=)V2 V2= 1
X4—X3 X3—X; X3—X, Xy—X;
(x4—xp) (x3—x;)
(x4 —xy)

= a,

B The third divided difference is thus equal to the coefficient ay.
® |f more data points are given, the procedure for calculating higher dif ferences continues in

the same manner.
45/52 Kundan Kumar Pattern Classification




Newton's
000000080000

A general form of Newton's polynomial and its coefficients

@)
X J|’1 ’ ‘i3
S [x2 3] \ ay
S [x3 %5, %]
f[X3,x2] < X3, Xyy X1 > f[x4’ x|3’ Xy, xl] \ as
] i
/
]

b) Y2

=

~
X < e <. = [X5» Xgs X35 X, 1]

< =

7

S [x4, %3] S [xs X4 X3, X5]
X4 Ya S [xs, x4 %3
f [xSs x4]
X5 Vs
1 I 1 | L 1 L | 1
Data Points First divided Second divided Third divided Fourth divided
difference difference difference difference
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A general form of Newton's polynomial and its coefficients

® |n general, when n data points are given, the procedure starts by calculating (n — 1)
first divided differ ences. Then, (n — 2) second divided differences are calculated
from the first divided differences. This is followed by calculating (n — 3) third
divided differences from the second divided differences. The process ends when one
nth divided difference is calculated from two (n — 1) divided differences to give the
coefficient a,,.

® |n general terms, for n given data points, (z1,v1), (z2,92), ... , (Tn,yn) , the first
divided differences between two points (x;,v;), and (z;,y;) are given by:
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A general form of Newton's polynomial and its coefficients

® The kth divided difference for second and higher divided differences up to the
(n — 1) difference is given by:

m With these definitions, the ( n -1) order Newton's polynomial, Eq. ( 6. 46) is given
by:

JO)=y =yt f [x5 xJ(x=x)+ f [ %3, X5, X ](x—x)(x—%)+ .. + F [X, Xpp gy 2n0s Xpy x,J(x —x) (x—xp) ... (x—x,_)
L I ] 1 I i 1 I 1

a a, a; U
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Notes about Newton's polynomials

® The spacings between the data points do not have to be the same.

® For a given set of n points, once the coefficients a; through a,, are determined,
they can be used for interpolation at any point between the data points.

m After the coefficients a; through a, are determined (for a given set of n points),

additional data points can be added (they do not have to be in order), and only the
additional coefficients have to be determined.
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Piecewise (Spline Interpolation)
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