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Introduction

� In many scientific and engineering experients, observations of physical quantities are
measured and recorded.

� For example, the strength of many metals depends on the size of the grains.

� Testing specimens with different grain sizes yields a discrete set of numbers (d-
average grain diameter, σy - yield strength) as
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Core Topics 

Curve fitting with a linear equation (6.2). 

Newton's polynomials (6.5.2). 

Piecewise (spline) interpolation (6.6). 

Curve fitting with nonlinear equation by writing the 

equation in linear form (6.3). 

Curve fitting with quadratic and higher order poly­

nomials (6.4 ). 

Interpolation using a single polynomial (6.5). 

Lagrange polynomials (6.5.1 ). 

Use of MATLAB built-in functions for curve fitting 

and interpolation (6.7). 
Complementarv Topics 

Curve fitting with linear combination of nonlinear 

functions (6.8). 

6.1 BACKGROUND 

Many scientific and engineering observations are made by conducting 
experiments in which physical quantities are measured and recorded. 
The experimental records are typically referred to as data points. For 
example, the strength of many metals depends on the size of the grains. 
Testing specimens with different grain sizes yields a discrete set of 
numbers (d- average grain diameter, cr

y 
- yield strength) as shown in 

Table 6-1. 

Table 6-1: Strength-grain size data. 

d(mm) 0.005 0.009 0.016 0.025 0.040 0.062 0.085 0.110 

cr
y 

(MPa) 205 150 135 97 89 80 70 67 

Sometimes measurements are made and recorded continuously with 
analog devices, but in most cases, especially in recent years with the 
wide use of computers, the measured quantities are digitized and stored 
as a set of discrete points. 

Once the data is known, scientists and engineers can use it in differ­
ent ways. Often the data is used for developing, or evaluating, mathe­
matical formulas (equations) that represent the data. This is done by 
curve fitting in which a specific form of an equation is assumed, or pro­
vided by a guiding theory, and then the parameters of the equation are 
determined such that the equation best fits the data points. Sometimes 
the data points are used for estimating the expected values between the 
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� The experimental records are typically referred to as data points.
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Introduction

� Often the data is used for developing, or evaluating, mathematical formulas
(equations) that represent the data.

� This is done by curve fitting in which a specific form of an equation is assumed, or
pro vided by a guiding theory, and then the parameters of the equation are
determined such that the equation best fits the data points.

� Curve fitting can be carried out with many types of functions and with polynomials
of various orders.

� Sometimes the data points are used for estimating the expected values between the
known points, a procedure called interpolation,

� For predicting how the data might extend beyond the range over which it was
measured, a procedure called extrapolation.
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Curve Fitting

� Curve fitting is a procedure in which a mathematical formula (equation) is used to
best fit a given set of data points.

� The objective is to find a function that fits the data points overall. This means that
the function does not have to give the exact value at any single point, but fits the
data well overall.
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Figure 6-1: Curve fitting. 
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known points, a procedure called interpolation, or for predicting how 

the data might extend beyond the range over which it was measured, a 

procedure called extrapolation. 

Curve fitting 

Curve fitting is a procedure in which a mathematical formula (equation) 

is used to best fit a given set of data points. The objective is to find a 

function that fits the data points overall. This means that the function 

does not have to give the exact value at any single point, but fits the 

data well overall. For example, Fig. 6-1 shows the data points from 

Table 6-1 and a curve that shows the best fit of a power function 

( cr = Cdm) to the data points. It can be observed that the curve fits the 

general trend of the data but does not match any of the data points 

exactly. Curve fitting is typically used when the values of the data 

points have some error, or scatter. Generally, all experimental measure­

ments have built-in errors or uncertainties, and requiring a curve fit to 

go through every data point is not beneficial. The procedure is also used 

for determining the validity of proposed equations used to represent the 

data and for determining the values of parameters (coefficients) in the 

equations. Curve fitting can be carried out with many types of functions 

and with polynomials of various orders. 

Interpolation 

Interpolation is a procedure for estimating a value between known val­

ues of data points. It is done by first determining a polynomial that 

gives the exact value at the data points, and then using the polynomial 

for calculating values between the points. When a small number of 

points is involved, a single polynomial might be sufficient for interpola­

tion over the whole domain of the data points. Often, however, when a 

large number of points are involved, different polynomials are used in 

the intervals between the points in a process that is called spline inter­

polation. For example, Fig. 6-2 shows a plot of the stress-strain rela­

tionship for rubber. The red markers show experimental points that 

were measured very accurately, and the solid curve was obtained by 

using spline interpolation. It can be observed that the curve passes 

through the points precisely and gives a good estimate of values 

between the points. 

The next three sections cover curve fitting. Section 6.2 describes 

how to curve-fit a set of data points with a linear function using least­

squares regression analysis. In Section 6.3 data points are curve fit with 

nonlinear functions by rewriting the functions in a linear form. In Sec­

tion 6.4 curve fitting is carried out with second and higher-order poly­

nomials. Interpolation is covered in the next two sections. Section 6.5 
shows how to find the equation of a single polynomial that passes 

through a given set of data points (Lagrange and Newton's polynomi­

als), and Section 6.6 covers piecewise (spline) interpolation in which 

� A curve that shows the best fit of a power function
( σ = Cdm) to the data points.

� It can be observed that the curve fits the general
trend of the data but does not match any of the
data points exactly.

� Generally, all experimental measurements have
built-in errors or uncertainties, and requiring a curve
fit to go through every data point is not beneficial.
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Curve Fitting with a linear equation
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Curve Fitting with a linear equation

� Curve fitting using a linear equation (first degree polynomial) is the process by
which an equation of the form:

y = a1x+ a0

is used to best fit given data points.
� This is done by determining the constants a1 and a0 that give the smallest error

when the data points are substituted in the equation.
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Figure 6-4: Many data points. 

different polynomials are used for interpolation in the intervals between 

the data points. Section 6. 7 describes the tools that MATLAB has for 

curve fitting and interpolation. In Section 6.8 curve fitting is done in a 

more general way by using a linear combination of nonlinear functions. 

6.2 CURVE FITTING WITH A LINEAR EQUATION 

Curve fitting using a linear equation (first degree polynomial) is the 

process by which an equation of the form: 

(6.1) 

is used to best fit given data points. This is done by determining the 

constants a1 and a0 that give the smallest error when the data points are 

substituted in Eq. ( 6.1 ). If the data comprise only two points, the con­

stants can be determined such that Eq. (6.1) gives the exact values at the 

points. Graphically, as shown in Fig. 6-3, it means that the straight line 

that corresponds to Eq. (6.1) passes through the two points. 

When the data consists of more than two points, obviously, a 

straight line cannot pass through all of the points. In this case, the con­

stants a1 and a0 are determined such that the line has the best fit overall, 

as illustrated in Fig. 6-4. 
The process of obtaining the constants that give the best fit first 

requires a definition of best fit (Section 6.2.1) and a mathematical pro­

cedure for deriving the value of the constants (Section 6.2.2). 

6.2. 1 Measuring How Good Is a Fit 

A criterion that measures how good a fit is between given data points 

and an approximating linear function is a formula that calculates a num­

ber that quantifies the overall agreement between the points and the 

function. Such a criterion is needed for two reasons. First, it can be used 

to compare two different functions that are used for fitting the same 

data points. Second, and even more important, the criterion itself is used 

for determining the coefficients of the function that give the best fit. 

This is shown in Section 6.2.2. 
The fit between given data points and an approximating linear func­

tion is determined by first calculating the error, also called the residual, 

which is the difference between a data point and the value of the 

approximating function, at each point. Subsequently, the residuals are 

used for calculating a total error for all the points. Figure 6-5 shows a 

general case of a linear function (straight line) that is used for curve fit­

ting n points. The residual r; at a point, (x;, y;), is the difference between 

the value Yi of the data point and the value of the function f (x;) used to 

approximate the data points: 

ri = 
Yi - f (x;) (6.2) 
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different polynomials are used for interpolation in the intervals between 

the data points. Section 6. 7 describes the tools that MATLAB has for 

curve fitting and interpolation. In Section 6.8 curve fitting is done in a 

more general way by using a linear combination of nonlinear functions. 

6.2 CURVE FITTING WITH A LINEAR EQUATION 

Curve fitting using a linear equation (first degree polynomial) is the 

process by which an equation of the form: 

(6.1) 

is used to best fit given data points. This is done by determining the 

constants a1 and a0 that give the smallest error when the data points are 

substituted in Eq. ( 6.1 ). If the data comprise only two points, the con­

stants can be determined such that Eq. (6.1) gives the exact values at the 

points. Graphically, as shown in Fig. 6-3, it means that the straight line 

that corresponds to Eq. (6.1) passes through the two points. 

When the data consists of more than two points, obviously, a 

straight line cannot pass through all of the points. In this case, the con­

stants a1 and a0 are determined such that the line has the best fit overall, 

as illustrated in Fig. 6-4. 
The process of obtaining the constants that give the best fit first 

requires a definition of best fit (Section 6.2.1) and a mathematical pro­

cedure for deriving the value of the constants (Section 6.2.2). 

6.2. 1 Measuring How Good Is a Fit 

A criterion that measures how good a fit is between given data points 

and an approximating linear function is a formula that calculates a num­

ber that quantifies the overall agreement between the points and the 

function. Such a criterion is needed for two reasons. First, it can be used 

to compare two different functions that are used for fitting the same 

data points. Second, and even more important, the criterion itself is used 

for determining the coefficients of the function that give the best fit. 

This is shown in Section 6.2.2. 
The fit between given data points and an approximating linear func­

tion is determined by first calculating the error, also called the residual, 

which is the difference between a data point and the value of the 

approximating function, at each point. Subsequently, the residuals are 

used for calculating a total error for all the points. Figure 6-5 shows a 

general case of a linear function (straight line) that is used for curve fit­

ting n points. The residual r; at a point, (x;, y;), is the difference between 

the value Yi of the data point and the value of the function f (x;) used to 

approximate the data points: 

ri = 
Yi - f (x;) (6.2) 
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Measuring How Good Is a Fit

� The fit between given data points and an approximating linear function is
determined by first calculating the error, also called the residual, which is the
difference between a data point and the value of the approximating function, at
each point.

� Subsequently, the residuals are used for
calculating a total error for all the
points.

� The residual r; at a point, (xi, yi), is
the difference between the value yi of
the data point and the value of the
function f(xi) used to approximate the
data points:

ri = yi − f(xi)
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Figure 6-6: Fit with no error 
according to Eq. (6.3). 
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Figure 6-7: Two fits with the same 
error according to Eq. (6.4). 

Chapter 6 Curve Fitting and Interpolation 

y 

j{x,) 1-----�--� 

f{x2) 1-------,� 

f{x1) ,___., 

x 

Figure 6-5: Curve-fitting points with a linear equation. 

A criterion that measures how well the approximating function fits 
the given data can be obtained by calculating a total error E in terms of 
the residuals. The overall error can be calculated in different ways. One 

simple way is to add the residuals of all the points: 
n n 

E = Lr;= L[Y;-(a1x;+a0)] 
i = 1 i = 1 

(6.3) 

The error that is calculated in this way does not provide a good measure 
of the overall fit. This is because a bad fit with positive residuals and 
negative residuals (both can be large) can sum up to give a zero (or very 

close to zero) error, implying a good fit. A situation like this is shown in 
Fig. 6-6, where E according to Eq. (6.3) is zero since r1 =-r4 and 

r2 =-r3. 
Another possibility is to make the overall error E equal to the sum 

of the absolute values of the residuals: 
n n 

E = Lhl = LIY;-(a1x;+ ao)I 
i = 1 i = 1 

(6.4) 

With this definition, the total error is always a positive number since the 
residuals cannot cancel each other. A smaller E in Eq. (6.4) indicates a 
better fit. This measure can be used to evaluate or compare proposed 
fits, but it cannot be used for determining the constants of the function 

that give the best fit. This is because the measure is not unique, which 
means that for the same set of points there can be several functions that 
give the same total error. This is shown in Fig. 6-7 where total error E 

according to Eq. (6.4) is the same for the two approximating lines. 
A definition for the overall error E that gives a good measure of the 

total error and can also be used for determining a unique linear function 

that has the best fit (i.e., smallest total error) is obtained by making E 

equal to the sum of the squares of the residuals: 

n n 

E = Lr[= L[Y;-(a1x;+ao)]2 
i = 1 i = 1 

(6.5) 
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Measuring How Good Is a Fit

� A criterion that measures how well the approximating function fits the given data
can be obtained by calculating a total error E in terms of the residuals.

E =

n∑
i=1

ri =

n∑
i=1

[yi − (a1xi + a0)]

or E =

n∑
i=1

|ri| =
n∑

i=1

|yi − (a1xi + a0)|

or E =

n∑
i=1

r2i =

n∑
i=1

[yi − (a1xi + a0)]
2

� A smaller E in indicates a better fit. This measure can be used to evaluate or
compare proposed fits, and last eqation can be used to calculate the coefficients a1
and a0 in the linear function.
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Linear Least-Squares Regression

� An experiment produces a set of data points (x1, y1), . . . , (xn, yn), where are
abscissas {xk} are distint.

� One goal of numerical methods is to determine a formula y = f(x) that relates
these variables.

y = f(x) = a1x+ a0

� Linear least-squares regression is a procedure in which the coefficients a1 and a0 of
a linear function y = a1x+ a0 are determined such that the function has the best
fit to a given set of data points.

� The best fit is defined as the smallest possible total error that is calculated by
adding the squares of the residuals

E =

n∑
i=1

[yi − (a1xi + a0)]
2
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Linear Least-Squares Regression

� Take the partial derivative of of above equation, we get

6.2 Curve Fitting with a Linear Equation 197 

With this definition, the overall error is always a positive number (posi­

tive and negative residuals do not cancel each other). In addition, larger 

residuals have a relatively larger effect (weight) on the total error. As 

already mentioned, Eq. (6.5) can be used to calculate the coefficients a1 
and a0 in the linear function y = a1x + a0 that give the smallest total 

error. This is done by using a procedure called linear least-squares 

regression, which is presented in the next section. 

6.2.2 Linear Least-Squares Regression 

Linear least-squares regression is a procedure in which the coefficients 

a1 and a0 of a linear function y = a1x + a0 are determined such that the 

function has the best fit to a given set of data points. The best fit is 

defined as the smallest possible total error that is calculated by adding 

the squares of the residuals according to Eq. (6.5). 

For a given set of n data points (x;, Y;), the overall error calculated 

by Eq. (6.5) is: 

n 

E = L[Y;-(a1x;+a0)]2 
i =I 

(6.6) 

Since all the values x; and Y; are known, E in Eq. (6.6) is a nonlinear 

function of the two variables a1 and a0• The function E has a minimum 

at the values of a 1 and a0 where the partial derivatives of E with respect 

to each variable is equal to zero. Taking the partial derivatives and set­

ting them equal to zero gives: 

(6.7) 

(6.8) 

Equations (6.7) and (6.8) are a system of two linear equations for the 

unknowns a 1 and a0, and can be rewritten in the form: 

na0 + (�x;)a1 = � Y; (6.9) 

(6.10) 

The solution of the system is: 

(6.11) 

� Above two equations are a system of two linear equations for the unknows a1 and
a0, and can be rewritten in the form as

6.2 Curve Fitting with a Linear Equation 197 

With this definition, the overall error is always a positive number (posi­

tive and negative residuals do not cancel each other). In addition, larger 

residuals have a relatively larger effect (weight) on the total error. As 

already mentioned, Eq. (6.5) can be used to calculate the coefficients a1 
and a0 in the linear function y = a1x + a0 that give the smallest total 

error. This is done by using a procedure called linear least-squares 

regression, which is presented in the next section. 

6.2.2 Linear Least-Squares Regression 

Linear least-squares regression is a procedure in which the coefficients 

a1 and a0 of a linear function y = a1x + a0 are determined such that the 

function has the best fit to a given set of data points. The best fit is 

defined as the smallest possible total error that is calculated by adding 

the squares of the residuals according to Eq. (6.5). 

For a given set of n data points (x;, Y;), the overall error calculated 

by Eq. (6.5) is: 

n 
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(6.6) 

Since all the values x; and Y; are known, E in Eq. (6.6) is a nonlinear 

function of the two variables a1 and a0• The function E has a minimum 

at the values of a 1 and a0 where the partial derivatives of E with respect 
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(6.11) 
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Linear Least-Squares Regression

� Solution can be written as

6.2 Curve Fitting with a Linear Equation 197 
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(6.12) 

Since Eqs. (6.11) and (6.12) contain summations that are the same, it is 
convenient to calculate the summations first and then to substitute them 
in the equations. To do this the summations are defined by: 

n 

S = 

" x 
x L..J ,, i = 

1 
(6.13) 

With these definitions, the equations for the coefficients a1 and a0 are: 

(6.14) 

Equations (6.14) give the values of a1 and a0 in the equation 

y = a1x + a0 that has the best fit ton data points (xi, yJ. Example 6-1 
shows how to use Eqs. ( 6.11) and ( 6.12) for fitting a linear equation to a 
set of data points. 

Example 6-1: Determination of absolute zero temperature. 

According to Charles's law for an ideal gas, at constant volume, a lin­
ear relationship exists between the pressure, p, and temperature, T. In 
the experiment shown in the figure, a fixed volume of gas in a sealed 

container is submerged in ice water (T = 0°C). The temperature of 

the gas is then increased in ten increments up to T = 100° C by heat­
ing the water, and the pressure of the gas is measured at each temper­
ature. The data from the experiment is: 

T ( 0C) 0 10 20 30 40 50 60 
p (atm.) 0.94 0.96 1.0 1.05 1.07 1.09 1.14 

T (OC) 

p (atm.) 

70 80 
1.17 1.21 

90 
1.24 

100 
1.28 

Extrapolate the data to determine the absolute zero temperature, T0. 
This can be done using the following steps: 
(a) Make a plot of the data (p versus 1). 

T 

u 
HOTPLATE 

(b) Use linear least-squares regression to determine a linear function in the form p = a1 T + a0 that 

best fits the data points. First calculate the coefficients by hand using only the four data points: 

0, 30, 70, and 100 °C. Then write a user-defined MATLAB function that calculates the coeffi­
cients of the linear function for any number of data points and use it with all the data points to 
determine the coefficients. 

� The values of a1 and a0 in the equation y = a1x+ a0 that has the best fit to n
data points (xi, yi)
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the experiment shown in the figure, a fixed volume of gas in a sealed 

container is submerged in ice water (T = 0°C). The temperature of 

the gas is then increased in ten increments up to T = 100° C by heat­
ing the water, and the pressure of the gas is measured at each temper­
ature. The data from the experiment is: 

T ( 0C) 0 10 20 30 40 50 60 
p (atm.) 0.94 0.96 1.0 1.05 1.07 1.09 1.14 

T (OC) 

p (atm.) 

70 80 
1.17 1.21 

90 
1.24 

100 
1.28 

Extrapolate the data to determine the absolute zero temperature, T0. 
This can be done using the following steps: 
(a) Make a plot of the data (p versus 1). 

T 

u 
HOTPLATE 

(b) Use linear least-squares regression to determine a linear function in the form p = a1 T + a0 that 

best fits the data points. First calculate the coefficients by hand using only the four data points: 

0, 30, 70, and 100 °C. Then write a user-defined MATLAB function that calculates the coeffi­
cients of the linear function for any number of data points and use it with all the data points to 
determine the coefficients. 
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Curve Fitting with Nonlinear Equation
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Curve Fitting with Nonlinear Equation

� Many situations in science and engineering show that the relationship between the
quantities that are being considered is not linear.

� For example, the data points meansured in RC circuit.
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6.3 CURVE FITTING WITH NONLINEAR EQUATION BY 
WRITING THE EQUATION IN A LINEAR FORM 

Many situations in science and engineering show that the relationship 

between the quantities that are being considered is not linear. For exam­

ple, Fig. 6-8 shows a plot of data points that were measured in an exper­

iment with an RC circuit. In this experiment, the voltage across the 

resistor is measured as a function of time, starting when the switch is 

closed. 

Nonlinear function 

10 20 30 t (s) 

Figure 6-8: Curve-fitting points with linear equation. 

The data points from the experiment are listed in Example 6-2. It is 

obvious from the plot that curve fitting the data points with a nonlinear 

function gives a much better fit than curve fitting with a linear function. 

There are many kinds of nonlinear functions. This section shows 

curve fitting with nonlinear functions that can be written in a form for 

which the linear least-squares regression method can be used for deter­

mining the coefficients that give the best fit. Examples of nonlinear 

functions used for curve fitting in the present section are: 

y = bxm (power function) 

y = bemx or y = blomx (exponential function) 

y = 
_1_ (reciprocal function) 
mx+b 

Polynomials of second, or higher, degree are also nonlinear func­

tions. Curve fitting with such polynomials is covered separately in Sec­

tion 6.4. 

Writing a nonlinear equation in linear form 

In order to be able to use linear regression, the form of a nonlinear equa­

tion of two variables is changed such that the new form is linear with 

terms that contain the original variables. For example, the power func­

tion y = bxm can be put into linear form by taking the natural logarithm 

(ln) of both sides: 

ln(y) = ln(bxm) = mln(x) + ln(b) (6.15) 

� It is obvious from the plot that curve fitting the data points with a nonlinear
function gives a much better fit than curve fitting with a linear function.
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� There are many kinds of nonlinear functions which can be used with linear-squares
regression method to determine the coefficients that gives the best fit.

� Examples of nonlinear functions used for curve fitting in the present section are:
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which the linear least-squares regression method can be used for deter­

mining the coefficients that give the best fit. Examples of nonlinear 
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_1_ (reciprocal function) 
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Polynomials of second, or higher, degree are also nonlinear func­

tions. Curve fitting with such polynomials is covered separately in Sec­

tion 6.4. 

Writing a nonlinear equation in linear form 

In order to be able to use linear regression, the form of a nonlinear equa­

tion of two variables is changed such that the new form is linear with 

terms that contain the original variables. For example, the power func­

tion y = bxm can be put into linear form by taking the natural logarithm 

(ln) of both sides: 

ln(y) = ln(bxm) = mln(x) + ln(b) (6.15) 

� In order to be able to use linear regression, the form of a nonlinear equation of two
variables is changed such that the new form is linear with terms that contain the
original variables.

� For example, the power function y = bxm can be put into linear form by taking the
natural logarithm (ln) of both sides:
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The data points from the experiment are listed in Example 6-2. It is 

obvious from the plot that curve fitting the data points with a nonlinear 

function gives a much better fit than curve fitting with a linear function. 

There are many kinds of nonlinear functions. This section shows 

curve fitting with nonlinear functions that can be written in a form for 

which the linear least-squares regression method can be used for deter­

mining the coefficients that give the best fit. Examples of nonlinear 

functions used for curve fitting in the present section are: 

y = bxm (power function) 

y = bemx or y = blomx (exponential function) 

y = 
_1_ (reciprocal function) 
mx+b 

Polynomials of second, or higher, degree are also nonlinear func­

tions. Curve fitting with such polynomials is covered separately in Sec­

tion 6.4. 

Writing a nonlinear equation in linear form 

In order to be able to use linear regression, the form of a nonlinear equa­

tion of two variables is changed such that the new form is linear with 

terms that contain the original variables. For example, the power func­

tion y = bxm can be put into linear form by taking the natural logarithm 

(ln) of both sides: 

ln(y) = ln(bxm) = mln(x) + ln(b) (6.15) 
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Writing a nonlinear equation in linear form

� This equation is linear for ln(y) in terms ln(x). The equation is in the form
Y = a1X + a0 where Y = ln(y), a1 = m,X = ln(x), and a0 = ln(b):

202 

Nonlinear 
equation 

y = bxm 

Y = bemx 

Y = bIQmx 

1 y= --

mx+b 

mx y= -

b+x 

Chapter 6 Curve Fitting and Interpolation 

This equation is linear for ln(y) in terms ln(x). The equation is in the 

form Y = a1X + a0 where Y = ln(y), a1 = m, X = ln(x), and 

a0 = ln(b): 

ln(y) = mln(x) + ln(b) 

���� 
Y = a1 X + a0 

This means that linear least-squares regression can be used for curve fit­

ting an equation of the form y = bxm to a set of data points xi, Y;- This 

is done by calculating a1 and a0 using Eqs. (6.11) and (6.12) [or (6.13) 

and (6.14)] while substituting ln(y;) for Y; and ln(x;) for x;. Once a1 

and a0 are known, the constants b and m in the exponential equation are 

calculated by: 

m = a and b = e(ao) I (6.16) 

Many other nonlinear equations can be transformed into linear form 

in a similar way. Table 6-2 lists several such equations. 

Table 6-2: Transforming nonlinear equations to linear form. 

Linear form 

ln(y) = mln(x) + ln(b) 

ln(y) = mx+ ln(b) 

log(y) = mx+log(b) 

1 - = mx+b 
y 

1 b 1 1 - = -
-+-y m x  m 

Relationship to 
Y = a1X+a0 

Y = ln(y), X = ln(x) 

a1 = m, a0 = ln(b) 

Y = ln(y), x = x 

a1 = m, a0 = ln(b) 

Y = log(y), x = x 

a1 = m, 

1 
y = -

' 
y 

a1 = m, 

1 
y = -

' 

a1 

y 
b 

-

-m 
' 

a0 = log(b) 

x = x 

a0 = b 

1 x = -
x 

1 ao = -m 

Values for 
linear Plot where data 
least- points appear to fit a 
squares straight line 
regression 

ln(x;) and y vs. x plot on logarith-

ln(y;) mic y and x axes. 

ln(y) vs. ln(x) plot on 

linear x and y axes. 

X
; 

and y vs. x plot on logarith-

ln(y;) mic y and linear x axes. 

ln(y) vs. x plot on lin-

ear x and y axes. 

x; and y vs. x plot on logarith-

log(y;) mic y and linear x axes. 

log(y) vs. x plot on lin-

ear x and y axes. 

X
; 

and 1 I y vs. x plot on linear 

lly; x andy axes. 

llx; and lly vs. llx plot on 

lly; linear x and y axes. 

� This means that linear least-squares regression can be used for curve fitting an
equation of the form y = bxm to a set of data points xi, yi.

� Once a1 and a0 are known, the constants b and m in the exponential equation are
calculated by:

m = a1 and b = ea0
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Transforming nonlinear equations to linear form

202 

Nonlinear 
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Y = a1 X + a0 

This means that linear least-squares regression can be used for curve fit­

ting an equation of the form y = bxm to a set of data points xi, Y;- This 

is done by calculating a1 and a0 using Eqs. (6.11) and (6.12) [or (6.13) 

and (6.14)] while substituting ln(y;) for Y; and ln(x;) for x;. Once a1 

and a0 are known, the constants b and m in the exponential equation are 

calculated by: 

m = a and b = e(ao) I (6.16) 

Many other nonlinear equations can be transformed into linear form 

in a similar way. Table 6-2 lists several such equations. 

Table 6-2: Transforming nonlinear equations to linear form. 

Linear form 

ln(y) = mln(x) + ln(b) 

ln(y) = mx+ ln(b) 

log(y) = mx+log(b) 

1 - = mx+b 
y 

1 b 1 1 - = -
-+-y m x  m 

Relationship to 
Y = a1X+a0 

Y = ln(y), X = ln(x) 

a1 = m, a0 = ln(b) 

Y = ln(y), x = x 

a1 = m, a0 = ln(b) 

Y = log(y), x = x 

a1 = m, 

1 
y = -

' 
y 

a1 = m, 

1 
y = -

' 

a1 

y 
b 

-

-m 
' 

a0 = log(b) 

x = x 

a0 = b 

1 x = -
x 

1 ao = -m 

Values for 
linear Plot where data 
least- points appear to fit a 
squares straight line 
regression 

ln(x;) and y vs. x plot on logarith-

ln(y;) mic y and x axes. 

ln(y) vs. ln(x) plot on 

linear x and y axes. 

X
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and y vs. x plot on logarith-

ln(y;) mic y and linear x axes. 

ln(y) vs. x plot on lin-

ear x and y axes. 

x; and y vs. x plot on logarith-

log(y;) mic y and linear x axes. 

log(y) vs. x plot on lin-

ear x and y axes. 

X
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and 1 I y vs. x plot on linear 

lly; x andy axes. 

llx; and lly vs. llx plot on 

lly; linear x and y axes. 
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How to choose an appropriate nonlinear function for curve fitting
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Curve fitting with quadratic and higher order polynomials
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Curve fitting with quadratic and higher order polynomials

Background:

� Polynomials are functions that have the form:

f(x) = anx
n + an−1x

n−1 + · · ·+ a0

The coefficients an, an−1, . . . , a1, a0 are real numbers, and n, which is a
nonnegative integer, is the degree, or order, of the polynomial.

� A plot of the polynomial is a curve. A first-order polynomial is a linear function,
and its plot is a straight line. Higher-order polynomials are nonlinear functions, and
their plots are curves.

� A quadratic (second-order) poly nomial is a curve that is either concave up or down
(parabola).

� A third-order polynomial has an inflection point such that the curve can be con
cave up (or down) in one region, and concave down (or up) in another.
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Curve fitting with polynomials of different order
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sense. Figure 6-10 shows curve fitting with polynomials of different 

order for the same set of 11 data points. The plots in the figure show 

that as the order of the polynomial increases the curve passes closer to 

the points. It is actually possible to have a polynomial that passes 

exactly through all of the points (at every point the value of the polyno­

mial is equal to the value of the point). For n points the polynomial that 

12 

10 

8 

;:... 6 ;:... 6 

4 4 

2 2 

10 12 2 4 6 8 10 12 2 4 6 8 10 12 
x x 

12 12 

10 10 I 0th degree polynomial 

8 8 
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2 2 

10 12 
0

0 2 4 6 8 10 12 
0 

0 2 4 6 8 10 12 
x x 

Curve fitting of the same set of data points with polynomials for different degrees. 

passes through all of the points is one of order ( n - 1). In Fig. 6-10 it is 

the tenth degree polynomial (since there are 11 points). 

Figure 6-10 shows that the same set of data points can be curve fit 

with polynomials of different order. The question as to which of the 

polynomials gives the best fit does not have a simple answer. It depends 

on the type and source of data, the engineering or science application 

associated with the data, and the purpose of the curve fitting. For exam­

ple, if the data points themselves are not accurate (there is possibly a 

large error when the quantity is measured), it does not make a lot of 

sense to use a higher-order polynomial that follows the points closely. 

On the other hand, if the values of the data points are very accurate and 

the curve fitting is used for representing the data, curve fitting with a 

higher-order polynomial might be more appropriate. However, as 

explained in the important note that follows, use of higher-order poly­

nomials for curve fitting is not recommended. 

Important note 

As already mentioned, for any number of data points, n, it is possible to 

derive a polynomial (order of ( n - 1)) that passes exactly through all the 

points. However, when many points are involved, this polynomial is of 

a high degree. Although the high-order polynomial gives the exact val­

ues at all of the data points, often the polynomial deviates significantly 
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Curve fitting with quadratic and higher order polynomials

� A given set of n data points can be curve-fit with polynomials of different order up
to an order of (n− 1).

� The coefficients of a polynomial can be determined such that the polynomial best
fits the data by minimizing the error in a least squares sense.

� For n points the polynomial that passes through all of the points is one of order
(n− 1). Even though the high-order polynomial gives the exact values at all the
data points, it cannot be used reliably for interpolation or extrapolation.
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Polynomial regression

� Polynomial regression is a procedure for determining the coefficients of a polynomial
of a second degree, or higher, such that the polynomial best fits (minimizing the
total error) a given set of data points.

� If the polynomial, of order m, that is used for curve fitting is:

f(x) = amx
m + am−1x

m−1 + . . .+ a1x+ a0

� Then, for a given set of n data points {(xi, yi)}ni=1 (m is smaller than n− 1), the
total error is given by:

E =

n∑
i=1

[
yi − (amx

m
i + am−1x

m−1
i + . . .+ a1xi + a0)

]2
� The function E has a minimum at the values of a0 through am where the partial

derivatives of E with respect to each of the variables is equal to zero.
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Polynomial regression

� For the simplicity, let us consider the case of m = 2 (quadratic polynomial)

E =

n∑
i=1

[
yi − (a2x

2
i + a1xi + a0)

]2
� Taking the partial derivatives with respect to a0, a1, and a2 , and setting them

equal to zero gives:

6.4 Curve Fitting with Quadratic and Higher-Order Polynomials 207 

between some of the points. This can be seen in the plot with the tenth 

order polynomial in Fig. 6-10, where between the first two points and 

between the last two points the curve of the polynomial wanders away 

and does not follow the general trend of the data points. This means that 

even though the high-order polynomial gives the exact values at all the 

data points, it cannot be used reliably for interpolation or extrapolation. 

Appropriate methods for interpolation are described in Sections 6.5 and 

6.6. 

Polynomial regression 

Polynomial regression is a procedure for determining the coefficients of 

a polynomial of a second degree, or higher, such that the polynomial 

best fits a given set of data points. As in linear regression, the derivation 

of the equations that are used for determining the coefficients is based 

on minimizing the total error. 

If the polynomial, of order m, that is used for the curve fitting is: 

f(x) = amxm+am-lxm-I+ ... +a1x+ao (6.20) 

then, for a given set of n data points (x;, y;) (m is smaller than n - 1), the 

total error is given by: 

n 

E = L[Y;-(amxf'+am_1x;n-1 + ... +a1x;+a0)]
2 

i =I 
(6.21) 

Since all the values xi and Y; of the data points are known, E in Eq. 

(6.21) is a nonlinear function of the m + 1 variables (the coefficients a0 
through am). The function E has a minimum at the values of a0 through 

am where the partial derivatives of E with respect to each of the vari­

ables is equal to zero. Taking the partial derivatives of E in Eq. (6.21) 
and setting them to zero gives a set of m + 1 linear equations for the 

coefficients. To simplify the presentation here, the derivation for the 

case of m = 2 (quadratic polynomial) is shown in detail. In this case 

Eq. (6.21) is: 
n 

E = L [Yi -(a2x[ + a1xi + a0)]
2 

i =I 
(6.22) 

Taking the partial derivatives with respect to a0, a1, and a2, and setting 

them equal to zero gives: 

n 

8E 
= -2L(Y;-a2xl'-a1x;-ao)x; = 0 

8a1 i= 1 

(6.23) 

(6.24) 
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(6.25) 

Equations (6.23) through (6.25) are a system of three linear equations 

for the unknowns a0, a1, and a2 , which can be rewritten in the form: 

(6.26) 

(6.27) 

(6.28) 

The solution of the system of equations (6.26}-(6.28) gives the values 

of the coefficients a0, a1, and a2 of the polynomial 

y = a2x'f + a1x; + a0 that best fits then data points (x;. y;). 

The coefficients for higher-order polynomials are derived in the 

same way. For an mth order polynomial, Eqs. (6.26)-(6.28) are 

extended to a set of m + 1 linear equations for the m + 1 coefficients. 

The equations for a fourth order polynomial are shown in Example 6-3. 

Example 6-3: Using polynomial regression for curve fitting of stress-strain curve. 

A tension test is conducted for determining the stress-strain 

behavior of rubber. The data points from the test are shown in 40 0 t 
the figure, and their values are given below. Determine the '2' 0 

� 30 0 

fourth order polynomial that best fits the data points. Make a 0 
"' 

plot of the data points and the curve that corresponds to the 
"' 20 0 II.) !::: 0 

polynomial. 
r/J 

10 0 

00000
° 

Strain e 0 0.4 0.8 1.2 1.6 2.0 2.4 0 0 

2 3 4 5 6 
Stress cr (MPa) 0 3.0 4.5 5.8 5.9 5.8 6.2 Strain 

Strain e 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 

Stress cr (MPa) 7.4 9.6 15.6 20.7 26.7 31.1 35.6 39.3 41.5 

SOLUTION 

A polynomial of the fourth order can be written as: 

f(x) = a4x4 
+ a3x3 + a2x2 + a1x + a0 (6.29) 

Curve fitting of 16 data points with this polynomial is done by polynomial regression. The values of 

the five coefficients a0, a1, a2 , a3 , and a4 are obtained by solving a system of five linear equations. 

The five equations can be written by extending Eqs. (6.26}-(6.28). 

(6.30) 
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Polynomial regression
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SOLUTION 

A polynomial of the fourth order can be written as: 

f(x) = a4x4 
+ a3x3 + a2x2 + a1x + a0 (6.29) 

Curve fitting of 16 data points with this polynomial is done by polynomial regression. The values of 
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The five equations can be written by extending Eqs. (6.26}-(6.28). 

(6.30) 

� The solution of the system of equations gives the values of the coefficients a0, a1,
and a2 of the polynomial y = a2x

2
i + a1xi + a0 that best fits then data points

{(xi, yi)}ni=1.

� The coefficients for higher-order polynomials are derived in the same way.
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Interpolation
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Interpolation

� Interpolation is a procedure for estimating a value between known val ues of data
points.

� It is done by first determining a polynomial that gives the exact value at the data
points, and then using the polynomial for calculating values between the points.
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Figure 6-1: Curve fitting. 
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known points, a procedure called interpolation, or for predicting how 

the data might extend beyond the range over which it was measured, a 

procedure called extrapolation. 

Curve fitting 

Curve fitting is a procedure in which a mathematical formula (equation) 

is used to best fit a given set of data points. The objective is to find a 

function that fits the data points overall. This means that the function 

does not have to give the exact value at any single point, but fits the 

data well overall. For example, Fig. 6-1 shows the data points from 

Table 6-1 and a curve that shows the best fit of a power function 

( cr = Cdm) to the data points. It can be observed that the curve fits the 

general trend of the data but does not match any of the data points 

exactly. Curve fitting is typically used when the values of the data 

points have some error, or scatter. Generally, all experimental measure­

ments have built-in errors or uncertainties, and requiring a curve fit to 

go through every data point is not beneficial. The procedure is also used 

for determining the validity of proposed equations used to represent the 

data and for determining the values of parameters (coefficients) in the 

equations. Curve fitting can be carried out with many types of functions 

and with polynomials of various orders. 

Interpolation 

Interpolation is a procedure for estimating a value between known val­

ues of data points. It is done by first determining a polynomial that 

gives the exact value at the data points, and then using the polynomial 

for calculating values between the points. When a small number of 

points is involved, a single polynomial might be sufficient for interpola­

tion over the whole domain of the data points. Often, however, when a 

large number of points are involved, different polynomials are used in 

the intervals between the points in a process that is called spline inter­

polation. For example, Fig. 6-2 shows a plot of the stress-strain rela­

tionship for rubber. The red markers show experimental points that 

were measured very accurately, and the solid curve was obtained by 

using spline interpolation. It can be observed that the curve passes 

through the points precisely and gives a good estimate of values 

between the points. 

The next three sections cover curve fitting. Section 6.2 describes 

how to curve-fit a set of data points with a linear function using least­

squares regression analysis. In Section 6.3 data points are curve fit with 

nonlinear functions by rewriting the functions in a linear form. In Sec­

tion 6.4 curve fitting is carried out with second and higher-order poly­

nomials. Interpolation is covered in the next two sections. Section 6.5 
shows how to find the equation of a single polynomial that passes 

through a given set of data points (Lagrange and Newton's polynomi­

als), and Section 6.6 covers piecewise (spline) interpolation in which 

� When a small number of points is involved, a
single polynomial might be sufficient for
interpola tion over the whole domain of the
data points.

� Often, however, when a large number of
points are involved, different polynomials are
used in the intervals between the points in a
process that is called spline inter polation.
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Figure 6-11: Various order polynomials. 

Once the polynomial is determined, it can be used for estimating 
the y values between the known points simply by substituting for the x 

coordinate in the polynomial. Interpolation with a single polynomial 
gives good results for a small number of points. For a large number of 
points the order of the polynomial is high, and although the polynomial 
passes through all the points, it might deviate significantly between the 
points. This was shown in Fig. 6-10 for a polynomial of tenth degree 
and is shown later in Fig. 6-17, where a 15th-order polynomial is used 
for interpolation of a set of 16 data points. Consequently, interpolation 
with a single polynomial might not be appropriate for a large number of 
points. For a large number of points, better interpolation can be done by 
using piecewise (spline) interpolation (covered in Section 6.6) in which 
different lower-order polynomials are used for interpolation between 
different points of the same set of data points. 

For a given set of n points, only one (unique) polynomial of order m 
( m = n - 1) passes exactly through all of the points. The polynomial, 
however, can be written in different mathematical forms. This section 
shows how to derive three forms of polynomials (standard, Lagrange, 
and Newton's). The different forms are suitable for use in different cir­
cumstances. 

The standard form of an mth-order polynomial is: 

(6.35) 

The coefficients in this form are determined by solving a system of 
m + 1 linear equations. The equations are obtained by writing the poly­

nomial explicitly for each point (substituting each point in the polyno­
mial). For example, the five points ( n = 5) in the fourth degree ( m = 4) 

� As discussed in curve
fitting, for any number of
points n there is a
polynomial of order n− 1
that passes through all of
the points.

� First, second, third, and
fourth-order polynomials
connect two, three, four,
and five points,
respectively.
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Interpolation using a single polynomial

� Interpolation with a single polynomial gives good results for a small number of
points.

� For a large number of points the order of the polynomial is high, and although the
polynomial passes through all the points, it might deviate significantly between the
points.
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sense. Figure 6-10 shows curve fitting with polynomials of different 

order for the same set of 11 data points. The plots in the figure show 

that as the order of the polynomial increases the curve passes closer to 

the points. It is actually possible to have a polynomial that passes 

exactly through all of the points (at every point the value of the polyno­

mial is equal to the value of the point). For n points the polynomial that 
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Curve fitting of the same set of data points with polynomials for different degrees. 

passes through all of the points is one of order ( n - 1). In Fig. 6-10 it is 

the tenth degree polynomial (since there are 11 points). 

Figure 6-10 shows that the same set of data points can be curve fit 

with polynomials of different order. The question as to which of the 

polynomials gives the best fit does not have a simple answer. It depends 

on the type and source of data, the engineering or science application 

associated with the data, and the purpose of the curve fitting. For exam­

ple, if the data points themselves are not accurate (there is possibly a 

large error when the quantity is measured), it does not make a lot of 

sense to use a higher-order polynomial that follows the points closely. 

On the other hand, if the values of the data points are very accurate and 

the curve fitting is used for representing the data, curve fitting with a 

higher-order polynomial might be more appropriate. However, as 

explained in the important note that follows, use of higher-order poly­

nomials for curve fitting is not recommended. 

Important note 

As already mentioned, for any number of data points, n, it is possible to 

derive a polynomial (order of ( n - 1)) that passes exactly through all the 

points. However, when many points are involved, this polynomial is of 

a high degree. Although the high-order polynomial gives the exact val­

ues at all of the data points, often the polynomial deviates significantly 

� Consequently, interpolation with a single polynomial
might not be appropriate for a large number of
points.

� For a large number of points, better interpolation
can be done by using piecewise (spline)
interpolation in which different lower-order
polynomials are used for interpolation between
different points of the same set of data points.
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� For a given set of n points, only one (unique) polynomial of order m (m = n− 1)
passes exactly through all of the points.

� The polynomial, however, can be written in different mathematical forms.
� Three forms of polynomials are

� Standard,
� Lagrange, and
� Newton’s

� Standard form of an mth-order polynomial is:

f(x) = amx
m + am−1x

m−1 + . . .+ a1x+ a0

� The coefficients in this form are determined by solving a system of m+ 1 linear
equations.

� The equations are obtained by writing the polynomial explicitly for each point
(substituting each point in the polynomial). (Refer to curve fitting)
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Lagrange Interplating Polynomials
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Lagrange Interplating Polynomials

� Lagrange interpolating polynomials are a particular form of polynomi als that can
be written to fit a given set of data points by using the val ues at the points.

� The polynomials can be written right away and do not require any preliminary
calculations for determining coefficients.

� Lagrange polynomials
� First-order Lagrange polynomial
� Second-order Lagrange polynomial
� General form of an n− 1 order Lagrange polynomial
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First order Lagrange polynomial

� For two points, (x1, y1), and (x2, y2), the first-order Lagrange polynomial that
passes through the points has the form:

f(x) = y = a1(x− x2) + a2(x− x1)6.5 Interpolation Using a Single Polynomial 213 

Figure 6-12: First-order 
Lagrange polynomial. 

Figure 6-13: Second-order 
Lagrange polynomial. 

For two points, (x1, y1), and (x2, y2), the first-order Lagrange poly­

nomial that passes through the points (Fig. 6-12) has the form: 

f(x ) = y = a1(X -X2)+ a2(X -X1) 

Substituting the two points in Eq. (6.37) gives: 

(6.37) 

and 

(6.38) 

Yi= a1(x2-x2)+ a2(x2-x1) or a2 = 

(x2
�xi ) 

(6.39) 

Substituting the coefficients a1 and a2 back in Eq. (6.37) gives: 

!( 
) (x -x2) (x -x1) x = Yi + Yi (x1 -x2) (x2 -x1) 

(6.40) 

Equation (6.40) is a linear function of x (an equation of a straight line 
that connects the two points). It is easy to see that if x = x1 is substituted 

in Eq. (6.40), the value of the polynomial is y1, and if x = x2 is substi­

tuted, the value of the polynomial is Yi· Substituting a value of x 
between the points gives an interpolated value of y. Equation (6.40) can 

also be rewritten in the standard form f(x ) = a1x + a0: 

f(x ) = 

(Yi -Y1) x + X
2 Yi -xi Yi 

(x2-x1) (x2-x1) 
(6.4 1 ) 

For three points, (x1, y1), (x2, y2), and (x3, y3), the second-order 

Lagrange polynomial that passes through the points (Fig. 6-13) has the 
form: 

Once the coefficients are determined such that the polynomial passes 
through the three points, the polynomial is: 

!( )
= 

(x-x2)(x-x3) (x-x1)(x-x3) (x-x1)(x-x2) (6 43) x Yi+ Ji+ Y3 · (x1-x2)(x1-x3) (x2-x1)(x2-x3) (x3-x1)(x3-x2) 

Equation (6.43) is a quadratic function of x. When the coordinate x1, 
x2, or x3 of one of the three given points is substituted in Eq. (6.43), the 

value of the polynomial is equal to y1, Ji, or y3, respectively. This is 

because the coefficient in front of the corresponding y; is equal to 1 and 

the coefficient of the other two terms is equal to zero. 

Following the format of the polynomials in Eqs. (6.41 )  and (6.43), 
the general formula of an n -1 order Lagrange polynomial that passes 

through n points (x1, y1), (x2, Ji), ... , (xn, Yn) is: 

� Substitute the two point in the above equation
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(6.4 1 ) 

For three points, (x1, y1), (x2, y2), and (x3, y3), the second-order 

Lagrange polynomial that passes through the points (Fig. 6-13) has the 
form: 

Once the coefficients are determined such that the polynomial passes 
through the three points, the polynomial is: 

!( )
= 
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Equation (6.43) is a quadratic function of x. When the coordinate x1, 
x2, or x3 of one of the three given points is substituted in Eq. (6.43), the 

value of the polynomial is equal to y1, Ji, or y3, respectively. This is 

because the coefficient in front of the corresponding y; is equal to 1 and 

the coefficient of the other two terms is equal to zero. 

Following the format of the polynomials in Eqs. (6.41 )  and (6.43), 
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through n points (x1, y1), (x2, Ji), ... , (xn, Yn) is: 

� Substitute a1 and a2 back
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For two points, (x1, y1), and (x2, y2), the first-order Lagrange poly­

nomial that passes through the points (Fig. 6-12) has the form: 

f(x ) = y = a1(X -X2)+ a2(X -X1) 

Substituting the two points in Eq. (6.37) gives: 

(6.37) 

and 

(6.38) 

Yi= a1(x2-x2)+ a2(x2-x1) or a2 = 

(x2
�xi ) 

(6.39) 

Substituting the coefficients a1 and a2 back in Eq. (6.37) gives: 

!( 
) (x -x2) (x -x1) x = Yi + Yi (x1 -x2) (x2 -x1) 

(6.40) 

Equation (6.40) is a linear function of x (an equation of a straight line 
that connects the two points). It is easy to see that if x = x1 is substituted 

in Eq. (6.40), the value of the polynomial is y1, and if x = x2 is substi­

tuted, the value of the polynomial is Yi· Substituting a value of x 
between the points gives an interpolated value of y. Equation (6.40) can 

also be rewritten in the standard form f(x ) = a1x + a0: 

f(x ) = 

(Yi -Y1) x + X
2 Yi -xi Yi 

(x2-x1) (x2-x1) 
(6.4 1 ) 

For three points, (x1, y1), (x2, y2), and (x3, y3), the second-order 

Lagrange polynomial that passes through the points (Fig. 6-13) has the 
form: 

Once the coefficients are determined such that the polynomial passes 
through the three points, the polynomial is: 

!( )
= 

(x-x2)(x-x3) (x-x1)(x-x3) (x-x1)(x-x2) (6 43) x Yi+ Ji+ Y3 · (x1-x2)(x1-x3) (x2-x1)(x2-x3) (x3-x1)(x3-x2) 

Equation (6.43) is a quadratic function of x. When the coordinate x1, 
x2, or x3 of one of the three given points is substituted in Eq. (6.43), the 

value of the polynomial is equal to y1, Ji, or y3, respectively. This is 

because the coefficient in front of the corresponding y; is equal to 1 and 

the coefficient of the other two terms is equal to zero. 

Following the format of the polynomials in Eqs. (6.41 )  and (6.43), 
the general formula of an n -1 order Lagrange polynomial that passes 

through n points (x1, y1), (x2, Ji), ... , (xn, Yn) is: 
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Second-order Lagrange polynomial

� For three points, (x1, y1), (x2, y2), and (x3, y3), the second-order Lagrange
polynomial that passes through the points has the form:
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Figure 6-13: Second-order 
Lagrange polynomial. 

For two points, (x1, y1), and (x2, y2), the first-order Lagrange poly­

nomial that passes through the points (Fig. 6-12) has the form: 
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and 
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Equation (6.40) is a linear function of x (an equation of a straight line 
that connects the two points). It is easy to see that if x = x1 is substituted 

in Eq. (6.40), the value of the polynomial is y1, and if x = x2 is substi­

tuted, the value of the polynomial is Yi· Substituting a value of x 
between the points gives an interpolated value of y. Equation (6.40) can 

also be rewritten in the standard form f(x ) = a1x + a0: 
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2 Yi -xi Yi 
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!( )
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Equation (6.43) is a quadratic function of x. When the coordinate x1, 
x2, or x3 of one of the three given points is substituted in Eq. (6.43), the 

value of the polynomial is equal to y1, Ji, or y3, respectively. This is 

because the coefficient in front of the corresponding y; is equal to 1 and 

the coefficient of the other two terms is equal to zero. 

Following the format of the polynomials in Eqs. (6.41 )  and (6.43), 
the general formula of an n -1 order Lagrange polynomial that passes 

through n points (x1, y1), (x2, Ji), ... , (xn, Yn) is: 

� Once the coefficients are determined such that the polynomial passes through the
three points, the polynomial (quadratic form) is:
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Equation (6.40) is a linear function of x (an equation of a straight line 
that connects the two points). It is easy to see that if x = x1 is substituted 

in Eq. (6.40), the value of the polynomial is y1, and if x = x2 is substi­

tuted, the value of the polynomial is Yi· Substituting a value of x 
between the points gives an interpolated value of y. Equation (6.40) can 

also be rewritten in the standard form f(x ) = a1x + a0: 

f(x ) = 

(Yi -Y1) x + X
2 Yi -xi Yi 

(x2-x1) (x2-x1) 
(6.4 1 ) 

For three points, (x1, y1), (x2, y2), and (x3, y3), the second-order 

Lagrange polynomial that passes through the points (Fig. 6-13) has the 
form: 

Once the coefficients are determined such that the polynomial passes 
through the three points, the polynomial is: 

!( )
= 

(x-x2)(x-x3) (x-x1)(x-x3) (x-x1)(x-x2) (6 43) x Yi+ Ji+ Y3 · (x1-x2)(x1-x3) (x2-x1)(x2-x3) (x3-x1)(x3-x2) 

Equation (6.43) is a quadratic function of x. When the coordinate x1, 
x2, or x3 of one of the three given points is substituted in Eq. (6.43), the 

value of the polynomial is equal to y1, Ji, or y3, respectively. This is 

because the coefficient in front of the corresponding y; is equal to 1 and 

the coefficient of the other two terms is equal to zero. 

Following the format of the polynomials in Eqs. (6.41 )  and (6.43), 
the general formula of an n -1 order Lagrange polynomial that passes 

through n points (x1, y1), (x2, Ji), ... , (xn, Yn) is: 

� Above equation can also be rewritten in the standard form f(x) = a2x
2 + a1x+ a0.

(Home work to derive the standard form)
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Figure 6-12: First-order 
Lagrange polynomial. 

Figure 6-13: Second-order 
Lagrange polynomial. 
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f(x ) = y = a1(X -X2)+ a2(X -X1) 

Substituting the two points in Eq. (6.37) gives: 

(6.37) 

and 

(6.38) 

Yi= a1(x2-x2)+ a2(x2-x1) or a2 = 

(x2
�xi ) 

(6.39) 

Substituting the coefficients a1 and a2 back in Eq. (6.37) gives: 

!( 
) (x -x2) (x -x1) x = Yi + Yi (x1 -x2) (x2 -x1) 

(6.40) 

Equation (6.40) is a linear function of x (an equation of a straight line 
that connects the two points). It is easy to see that if x = x1 is substituted 

in Eq. (6.40), the value of the polynomial is y1, and if x = x2 is substi­

tuted, the value of the polynomial is Yi· Substituting a value of x 
between the points gives an interpolated value of y. Equation (6.40) can 

also be rewritten in the standard form f(x ) = a1x + a0: 

f(x ) = 

(Yi -Y1) x + X
2 Yi -xi Yi 

(x2-x1) (x2-x1) 
(6.4 1 ) 

For three points, (x1, y1), (x2, y2), and (x3, y3), the second-order 

Lagrange polynomial that passes through the points (Fig. 6-13) has the 
form: 

Once the coefficients are determined such that the polynomial passes 
through the three points, the polynomial is: 

!( )
= 

(x-x2)(x-x3) (x-x1)(x-x3) (x-x1)(x-x2) (6 43) x Yi+ Ji+ Y3 · (x1-x2)(x1-x3) (x2-x1)(x2-x3) (x3-x1)(x3-x2) 

Equation (6.43) is a quadratic function of x. When the coordinate x1, 
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General form of Lagrange polynomial

� the general formula of an n− 1 order Lagrange polynomial that passes through n
points (x1, y1), (x2, y2), ... , (xn, yn) is:

214 Chapter 6 Curve Fitting and Interpolation 

f( 

) 
(x-x2)(x-x3) ... (x-xn) (x-x1)(x-x3) ... (x-xn) 

x = Y1+ Yz-+ (x1-x2)(x1-x3) ... (x1-xn) (x2-x1)(x2-x3) ... (x2-xn) 

(x-x1)(x-x2) ... (x-xi-I )(x-xi+ 1) ... (x-xn) 
(6.44) ... + Y;+ ... + 

(xi-x1 )(x;-x2) ... (x;-X; _ 1)(x;-X; + 1) ... (x;-xn) 

(x-x1)(x-x2) ... (x-xn_ 1) 
(xn-x1)(xn-x2) ... (xn-xn-1) Y

n 

On the right-hand side of Eq. (6.44) the numerator of the ith term does 

not contain (x-x;), and the denominator does not contain (Jj-x;). Con­

sequently, when the coordinate x; of one of then points is substituted in 

Eq. (6.44), the value of the polynomial is equal to Y;· Equation (6.44) 

can be written in a compact form using summation and product notation 

as: 

(6.45) 

n (x -x ) 
where L;(x) = IJ _ i are called the Lagrange functions. This 

1 = /x; x1) 
}'# i 

form can easily be implemented in a computer program, as shown in 

Example 6-4. 

Additional notes about Lagrange polynomials 

• The spacing between the data points does not have to be equal. 

• For a given set of points, the whole expression of the interpolation 

polynomial has to be calculated for every value of x. In other words, 

the interpolation calculations for each value of x are independent of 

others. This is different from other forms (e.g., Eq. (6.35)) where 

once the coefficients of the polynomial are determined, they can be 

used for calculating different values of x. 

• If an interpolated value is calculated for a given set of data points, 

and then the data set is enlarged to include additional points, all the 

terms of the Lagrange polynomial have to be calculated again. As 

shown in Section 6.5.2, this is different from Newton's polynomials 

where only the new terms have to be calculated if more data points 

are added. 

Application of a Lagrange polynomial is shown in Example 6-4. 
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form can easily be implemented in a computer program, as shown in 
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• The spacing between the data points does not have to be equal. 
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polynomial has to be calculated for every value of x. In other words, 

the interpolation calculations for each value of x are independent of 

others. This is different from other forms (e.g., Eq. (6.35)) where 

once the coefficients of the polynomial are determined, they can be 

used for calculating different values of x. 

• If an interpolated value is calculated for a given set of data points, 

and then the data set is enlarged to include additional points, all the 

terms of the Lagrange polynomial have to be calculated again. As 

shown in Section 6.5.2, this is different from Newton's polynomials 

where only the new terms have to be calculated if more data points 

are added. 

Application of a Lagrange polynomial is shown in Example 6-4. 
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Conclusive remarks

� The spacing between the data points does not have to be equal.

� For a given set of points, the whole expression of the interpolation polynomial has
to be calculated for every value of x. In other words, the interpolation calculations
for each value of x are independent of others.

� Different from other forms where once the coefficients of the polynomial are
determined, they can be used for calculating different values of x.

� If an interpolated value is calculated for a given set of data points, and then the
data set is enlarged to include additional points, all the terms of the Lagrange
polynomial have to be calculated again.

� As discussed in next topic, this is different from Newton’s polynomials where only
the new terms have to be calculated if more data points are added.
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Newton’s Interpolating Polynomials
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Newton’s Interpolating Polynomials

� Newton’s interpolating polynomials are a popular means of exactly fitting a given
set of data points.

� The general form of an n− 1 order Newton’s polynomial that passes through n
points is:

f(x) = a1+a2(x−x1)+a3(x−x1)(x−x2)+ . . .+an(x−x1)(x−x2) . . . (x−xn−1)

� The special feature of this form of the polynomial is that the coeffi cients a1
through an can be determined using a simple mathematical procedure.

� (Determination of the coefficients does not require a solu tion of a system of n
equations.)

� Once the coefficients are known, the polynomial can be used for calculating an
interpolated value at any x.
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Newton’s Interpolating Polynomials

� Newton’s interpolating polynomials have additional desirable features that make
them a popular choice.

� The data points do not have to be in descending or ascending order, or in any order.

� Moreover, after the n coefficients of an n− 1 order Newton’s interpolating
polynomial are determined for n given points, more points can be added to the data
set and only the new additional coefficients have to be determined.
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First-order Newton’s polynomial

� For two given points, (x1, y1) and (x2, y2), the first-order Newton’s polynomial has
the form:

f(x) = a1 + a2(x− x1)
It is an equation of a straight line that passes through the points.
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Figure 6-14: First-order 
Newton's polynomial. 
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Figure 6-15: Second-order 
Newton's polynomial. 

x 

x 

First-order Newton's polynomial 

For two given points, (x1, y1) and (x2, y2) , the first-order Newton's 

polynomial has the form: 

(6.47) 

As shown in Fig. 6-14, it is an equation of a straight line that passes 

through the points. The coefficients a1 and a2 can be calculated by 

considering the similar triangles in Fig. 6-14. 

DE =AB 
or 

CE CB' 

f(x) -Y1 
= Y

2-Yi 

Solving Eq. (6.48) for f(x) gives: 

X-Xl Xz-X1 

f(x) = Y1 + Yz -
y1

(x -xi) 
Xz-XI 

(6.48) 

(6.49) 

Comparing Eq. (6.49) with Eq. (6.47) gives the values of the coeffi­

cients a1 and a2 in terms of the coordinates of the points: 

a1 = y1 , and Y2-Y1 
az = --

Xz -XI 
(6.50) 

Notice that the coefficient a2 is the slope of the line that connects the 

two points. As shown in Chapter 8, a2 is the two-point forward differ­

ence approximation for the first derivative at (x1, y1). 

Second-order Newton's polynomial 

For three given points, (x1, y1), (x2, y2) , and (x3, y3), the second-order 

Newton's polynomial has the form: 

f(x) = a1 +a2(x-x1)+a3(x-x1) (x-x2) (6.51) 

As shown in Fig. 6-15, it is an equation of a parabola that passes 

through the three points. The coefficients a1, a2, and a3 can be deter­

mined by substituting the three points in Eq. (6.51). Substituting x = x1 

and f(x1) = y1 gives: a1 = y1• Substituting the second point, x = x2 and 

f(x2) = y2, (and a1 =Yi) in Eq. (6.51) gives: 

(6.52) 

Substituting the third point, x = x3 and f(x3) = y3 (as well as 

a1 =Yi and a2 = Yz -Yi
) in Eq. (6.51) gives: 

Xz -Xi 

(6.53) 

� The coefficients a1 and a2 can be calculated by
considering the similar triangles
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az = --

Xz -XI 
(6.50) 

Notice that the coefficient a2 is the slope of the line that connects the 

two points. As shown in Chapter 8, a2 is the two-point forward differ­

ence approximation for the first derivative at (x1, y1). 

Second-order Newton's polynomial 

For three given points, (x1, y1), (x2, y2) , and (x3, y3), the second-order 

Newton's polynomial has the form: 

f(x) = a1 +a2(x-x1)+a3(x-x1) (x-x2) (6.51) 

As shown in Fig. 6-15, it is an equation of a parabola that passes 
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mined by substituting the three points in Eq. (6.51). Substituting x = x1 
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First-order Newton's polynomial 

For two given points, (x1, y1) and (x2, y2) , the first-order Newton's 

polynomial has the form: 

(6.47) 

As shown in Fig. 6-14, it is an equation of a straight line that passes 

through the points. The coefficients a1 and a2 can be calculated by 

considering the similar triangles in Fig. 6-14. 

DE =AB 
or 

CE CB' 

f(x) -Y1 
= Y

2-Yi 

Solving Eq. (6.48) for f(x) gives: 

X-Xl Xz-X1 

f(x) = Y1 + Yz -
y1

(x -xi) 
Xz-XI 

(6.48) 

(6.49) 

Comparing Eq. (6.49) with Eq. (6.47) gives the values of the coeffi­

cients a1 and a2 in terms of the coordinates of the points: 

a1 = y1 , and Y2-Y1 
az = --

Xz -XI 
(6.50) 

Notice that the coefficient a2 is the slope of the line that connects the 

two points. As shown in Chapter 8, a2 is the two-point forward differ­

ence approximation for the first derivative at (x1, y1). 

Second-order Newton's polynomial 

For three given points, (x1, y1), (x2, y2) , and (x3, y3), the second-order 

Newton's polynomial has the form: 

f(x) = a1 +a2(x-x1)+a3(x-x1) (x-x2) (6.51) 

As shown in Fig. 6-15, it is an equation of a parabola that passes 

through the three points. The coefficients a1, a2, and a3 can be deter­

mined by substituting the three points in Eq. (6.51). Substituting x = x1 

and f(x1) = y1 gives: a1 = y1• Substituting the second point, x = x2 and 

f(x2) = y2, (and a1 =Yi) in Eq. (6.51) gives: 

(6.52) 

Substituting the third point, x = x3 and f(x3) = y3 (as well as 

a1 =Yi and a2 = Yz -Yi
) in Eq. (6.51) gives: 

Xz -Xi 

(6.53) 

� The coefficient a2 is the slope of the line that connects
the two points.
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Second-order Newton’s polynomial

� For three given points, (x1, y1), (x2, y2), and (x3, y3), the second-order Newton’s
polynomial has the form:

f(x) = a1 + a2(x− x1) + a3(x− x1)(x− x2)
It is an equation of a parabola that passes through the three points.
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First-order Newton's polynomial 

For two given points, (x1, y1) and (x2, y2) , the first-order Newton's 

polynomial has the form: 

(6.47) 

As shown in Fig. 6-14, it is an equation of a straight line that passes 

through the points. The coefficients a1 and a2 can be calculated by 

considering the similar triangles in Fig. 6-14. 
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= Y

2-Yi 

Solving Eq. (6.48) for f(x) gives: 
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Xz-XI 

(6.48) 

(6.49) 

Comparing Eq. (6.49) with Eq. (6.47) gives the values of the coeffi­

cients a1 and a2 in terms of the coordinates of the points: 

a1 = y1 , and Y2-Y1 
az = --

Xz -XI 
(6.50) 

Notice that the coefficient a2 is the slope of the line that connects the 

two points. As shown in Chapter 8, a2 is the two-point forward differ­

ence approximation for the first derivative at (x1, y1). 

Second-order Newton's polynomial 

For three given points, (x1, y1), (x2, y2) , and (x3, y3), the second-order 

Newton's polynomial has the form: 

f(x) = a1 +a2(x-x1)+a3(x-x1) (x-x2) (6.51) 

As shown in Fig. 6-15, it is an equation of a parabola that passes 

through the three points. The coefficients a1, a2, and a3 can be deter­

mined by substituting the three points in Eq. (6.51). Substituting x = x1 

and f(x1) = y1 gives: a1 = y1• Substituting the second point, x = x2 and 

f(x2) = y2, (and a1 =Yi) in Eq. (6.51) gives: 

(6.52) 

Substituting the third point, x = x3 and f(x3) = y3 (as well as 

a1 =Yi and a2 = Yz -Yi
) in Eq. (6.51) gives: 

Xz -Xi 

(6.53) 

� The coefficients a1, a2, and a3 can be determined
by substituting the three points in above equation.

� Substituting x = x1 and f(x1) = y1 gives: a1 = y1
� Substituting the second point, x = x2 and
f(x2) = y2, (and a1 = y1) in above eq. gives:
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Figure 6-14: First-order 
Newton's polynomial. 
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Figure 6-15: Second-order 
Newton's polynomial. 

x 

x 

First-order Newton's polynomial 

For two given points, (x1, y1) and (x2, y2) , the first-order Newton's 

polynomial has the form: 

(6.47) 

As shown in Fig. 6-14, it is an equation of a straight line that passes 

through the points. The coefficients a1 and a2 can be calculated by 

considering the similar triangles in Fig. 6-14. 

DE =AB 
or 

CE CB' 

f(x) -Y1 
= Y

2-Yi 

Solving Eq. (6.48) for f(x) gives: 

X-Xl Xz-X1 

f(x) = Y1 + Yz -
y1

(x -xi) 
Xz-XI 

(6.48) 

(6.49) 

Comparing Eq. (6.49) with Eq. (6.47) gives the values of the coeffi­

cients a1 and a2 in terms of the coordinates of the points: 

a1 = y1 , and Y2-Y1 
az = --

Xz -XI 
(6.50) 

Notice that the coefficient a2 is the slope of the line that connects the 

two points. As shown in Chapter 8, a2 is the two-point forward differ­

ence approximation for the first derivative at (x1, y1). 

Second-order Newton's polynomial 

For three given points, (x1, y1), (x2, y2) , and (x3, y3), the second-order 

Newton's polynomial has the form: 

f(x) = a1 +a2(x-x1)+a3(x-x1) (x-x2) (6.51) 

As shown in Fig. 6-15, it is an equation of a parabola that passes 

through the three points. The coefficients a1, a2, and a3 can be deter­

mined by substituting the three points in Eq. (6.51). Substituting x = x1 

and f(x1) = y1 gives: a1 = y1• Substituting the second point, x = x2 and 

f(x2) = y2, (and a1 =Yi) in Eq. (6.51) gives: 

(6.52) 

Substituting the third point, x = x3 and f(x3) = y3 (as well as 

a1 =Yi and a2 = Yz -Yi
) in Eq. (6.51) gives: 

Xz -Xi 

(6.53) 
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Second-order Newton’s polynomial

� Substituting the third point, x = x3 and f(x3) = y3 (as well as a1 = y1 and
a2 =

y2−y1
x2−x1

) in f(x) that gives:
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Figure 6-15: Second-order 
Newton's polynomial. 

x 

x 

First-order Newton's polynomial 

For two given points, (x1, y1) and (x2, y2) , the first-order Newton's 

polynomial has the form: 

(6.47) 

As shown in Fig. 6-14, it is an equation of a straight line that passes 

through the points. The coefficients a1 and a2 can be calculated by 

considering the similar triangles in Fig. 6-14. 

DE =AB 
or 

CE CB' 

f(x) -Y1 
= Y

2-Yi 

Solving Eq. (6.48) for f(x) gives: 

X-Xl Xz-X1 

f(x) = Y1 + Yz -
y1

(x -xi) 
Xz-XI 

(6.48) 

(6.49) 

Comparing Eq. (6.49) with Eq. (6.47) gives the values of the coeffi­

cients a1 and a2 in terms of the coordinates of the points: 

a1 = y1 , and Y2-Y1 
az = --

Xz -XI 
(6.50) 

Notice that the coefficient a2 is the slope of the line that connects the 

two points. As shown in Chapter 8, a2 is the two-point forward differ­

ence approximation for the first derivative at (x1, y1). 

Second-order Newton's polynomial 

For three given points, (x1, y1), (x2, y2) , and (x3, y3), the second-order 

Newton's polynomial has the form: 

f(x) = a1 +a2(x-x1)+a3(x-x1) (x-x2) (6.51) 

As shown in Fig. 6-15, it is an equation of a parabola that passes 

through the three points. The coefficients a1, a2, and a3 can be deter­

mined by substituting the three points in Eq. (6.51). Substituting x = x1 

and f(x1) = y1 gives: a1 = y1• Substituting the second point, x = x2 and 

f(x2) = y2, (and a1 =Yi) in Eq. (6.51) gives: 

(6.52) 

Substituting the third point, x = x3 and f(x3) = y3 (as well as 

a1 =Yi and a2 = Yz -Yi
) in Eq. (6.51) gives: 

Xz -Xi 

(6.53) 

Above equation can be solved for a3 and rearranged to give (after some algebra):
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Equation (6.53) can be solved for a3 and rearranged to give (after some 

algebra): 

Y3-Y2 Y2-Y1 
-- - --

X3-X2 X2-X1 
a3 = -----

(x3 -xi) 
(6.54) 

The coefficients a1, and a2 are the same in the first-order and sec­

ond-order polynomials. This means that if two points are given and a 

first-order Newton's polynomial is fit to pass through those points, and 

then a third point is added, the polynomial can be changed to be of sec­

ond-order and pass through the three points by only determining the 

value of one additional coefficient. 

Third-order Newton's polynomial 

For four given points, (x1, y1), (x2, Ji), (x3, y3) and (x4, y4), the third­

order Newton's polynomial that passes through the four points has the 

form: 

f(x ) = y =a1+ a2(x-x1)+a3(x-x1) (x-x2)+ a4(x-x1) (x-x2) (x-x3) (6.55) 

The formulas for the coefficients a1, a2, and a3 are the same as for the 

second order polynomial. The formula for the coefficient a4 can be 

obtained by substituting (x4, y 4), in Eq. ( 6.5 5) and solving for a4, which 

gives: 

(y4-y3 Y3-Y2) (y3-Y2 Y2-Y1) 
X4 -X3 X3 -X2 X3 -X2 X2 -XI 

(x4-x2) (x3-x1) 
a4 = -------------

(x4 -X1) 

A general form of Newton's polynomial and its coefficients 

(6.56) 

A careful examination of the equations for the coefficients a2 (Eq. 

(6.52)), a3, (Eq. (6.54)) and a4, (Eq. (6.56)) shows that the expressions 

follow a certain pattern. The pattern can be clarified by defining so­

called divided differences. 

For two points, (x1, y1), and (x2, Yi) ,  the first divided difference, 

written as f [x2, xi], is defined as the slope of the line connecting the 

two points: 

(6.57) 

The first divided difference is equal to the coefficient a2• 

For three points (x1, y1), (x2, y2), and (x3, y3) the second divided dif­

ference, written as f [x3, x2, xi], is defined as the difference between the 

first divided differences of points (x3, y3), and (x2, Ji), and points 

(x2, y2), and (x1, y1) divided by (x3 -x1): 

� The coefficients a1, and a2 are the same in the first-order and sec ond-order
polynomials. This means that if two points are given and a first-order Newton’s
polynomial is fit to pass through those points, and then a third point is added, the
polynomial can be changed to be of sec ond-order and pass through the three
points by only determining the value of one additional coefficient.
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Third-order Newton’s polynomial

� For four given points, (x1, y1), (x2, y2), (x3, y3) and (x4, y4), the third-order
Newton’s polynomial that passes through the four points has the form:
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Equation (6.53) can be solved for a3 and rearranged to give (after some 

algebra): 

Y3-Y2 Y2-Y1 
-- - --

X3-X2 X2-X1 
a3 = -----

(x3 -xi) 
(6.54) 

The coefficients a1, and a2 are the same in the first-order and sec­

ond-order polynomials. This means that if two points are given and a 

first-order Newton's polynomial is fit to pass through those points, and 

then a third point is added, the polynomial can be changed to be of sec­

ond-order and pass through the three points by only determining the 

value of one additional coefficient. 

Third-order Newton's polynomial 

For four given points, (x1, y1), (x2, Ji), (x3, y3) and (x4, y4), the third­

order Newton's polynomial that passes through the four points has the 

form: 

f(x ) = y =a1+ a2(x-x1)+a3(x-x1) (x-x2)+ a4(x-x1) (x-x2) (x-x3) (6.55) 

The formulas for the coefficients a1, a2, and a3 are the same as for the 

second order polynomial. The formula for the coefficient a4 can be 

obtained by substituting (x4, y 4), in Eq. ( 6.5 5) and solving for a4, which 

gives: 

(y4-y3 Y3-Y2) (y3-Y2 Y2-Y1) 
X4 -X3 X3 -X2 X3 -X2 X2 -XI 

(x4-x2) (x3-x1) 
a4 = -------------

(x4 -X1) 

A general form of Newton's polynomial and its coefficients 

(6.56) 

A careful examination of the equations for the coefficients a2 (Eq. 

(6.52)), a3, (Eq. (6.54)) and a4, (Eq. (6.56)) shows that the expressions 

follow a certain pattern. The pattern can be clarified by defining so­

called divided differences. 

For two points, (x1, y1), and (x2, Yi) ,  the first divided difference, 

written as f [x2, xi], is defined as the slope of the line connecting the 

two points: 

(6.57) 

The first divided difference is equal to the coefficient a2• 

For three points (x1, y1), (x2, y2), and (x3, y3) the second divided dif­

ference, written as f [x3, x2, xi], is defined as the difference between the 

first divided differences of points (x3, y3), and (x2, Ji), and points 

(x2, y2), and (x1, y1) divided by (x3 -x1): 

� The formulas for the coefficients a1, a2, and a3 are the same as for the second
order polynomial. The formula for the coefficient a4 can be obtained by
substituting (x4, y4), in Eq and solving for a4, which gives:
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Equation (6.53) can be solved for a3 and rearranged to give (after some 

algebra): 

Y3-Y2 Y2-Y1 
-- - --

X3-X2 X2-X1 
a3 = -----

(x3 -xi) 
(6.54) 

The coefficients a1, and a2 are the same in the first-order and sec­

ond-order polynomials. This means that if two points are given and a 

first-order Newton's polynomial is fit to pass through those points, and 

then a third point is added, the polynomial can be changed to be of sec­

ond-order and pass through the three points by only determining the 

value of one additional coefficient. 

Third-order Newton's polynomial 

For four given points, (x1, y1), (x2, Ji), (x3, y3) and (x4, y4), the third­

order Newton's polynomial that passes through the four points has the 

form: 

f(x ) = y =a1+ a2(x-x1)+a3(x-x1) (x-x2)+ a4(x-x1) (x-x2) (x-x3) (6.55) 

The formulas for the coefficients a1, a2, and a3 are the same as for the 

second order polynomial. The formula for the coefficient a4 can be 

obtained by substituting (x4, y 4), in Eq. ( 6.5 5) and solving for a4, which 

gives: 

(y4-y3 Y3-Y2) (y3-Y2 Y2-Y1) 
X4 -X3 X3 -X2 X3 -X2 X2 -XI 

(x4-x2) (x3-x1) 
a4 = -------------

(x4 -X1) 

A general form of Newton's polynomial and its coefficients 

(6.56) 

A careful examination of the equations for the coefficients a2 (Eq. 

(6.52)), a3, (Eq. (6.54)) and a4, (Eq. (6.56)) shows that the expressions 

follow a certain pattern. The pattern can be clarified by defining so­

called divided differences. 

For two points, (x1, y1), and (x2, Yi) ,  the first divided difference, 

written as f [x2, xi], is defined as the slope of the line connecting the 

two points: 

(6.57) 

The first divided difference is equal to the coefficient a2• 

For three points (x1, y1), (x2, y2), and (x3, y3) the second divided dif­

ference, written as f [x3, x2, xi], is defined as the difference between the 

first divided differences of points (x3, y3), and (x2, Ji), and points 

(x2, y2), and (x1, y1) divided by (x3 -x1): 
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A general form of Newton’s polynomial and its coefficients

� There is common pattern in all equations that can be clarified by defining so called
divided differences.

� For two points, (x1, y1), and (x2, y2), the first divided difference, written as
f [x2, xi], is defined as the slope of the line connecting the two points:

218 Chapter 6 Curve Fitting and Interpolation 

Equation (6.53) can be solved for a3 and rearranged to give (after some 

algebra): 

Y3-Y2 Y2-Y1 
-- - --

X3-X2 X2-X1 
a3 = -----

(x3 -xi) 
(6.54) 

The coefficients a1, and a2 are the same in the first-order and sec­

ond-order polynomials. This means that if two points are given and a 

first-order Newton's polynomial is fit to pass through those points, and 

then a third point is added, the polynomial can be changed to be of sec­

ond-order and pass through the three points by only determining the 

value of one additional coefficient. 

Third-order Newton's polynomial 

For four given points, (x1, y1), (x2, Ji), (x3, y3) and (x4, y4), the third­

order Newton's polynomial that passes through the four points has the 

form: 

f(x ) = y =a1+ a2(x-x1)+a3(x-x1) (x-x2)+ a4(x-x1) (x-x2) (x-x3) (6.55) 

The formulas for the coefficients a1, a2, and a3 are the same as for the 

second order polynomial. The formula for the coefficient a4 can be 

obtained by substituting (x4, y 4), in Eq. ( 6.5 5) and solving for a4, which 

gives: 

(y4-y3 Y3-Y2) (y3-Y2 Y2-Y1) 
X4 -X3 X3 -X2 X3 -X2 X2 -XI 

(x4-x2) (x3-x1) 
a4 = -------------

(x4 -X1) 

A general form of Newton's polynomial and its coefficients 

(6.56) 

A careful examination of the equations for the coefficients a2 (Eq. 

(6.52)), a3, (Eq. (6.54)) and a4, (Eq. (6.56)) shows that the expressions 

follow a certain pattern. The pattern can be clarified by defining so­

called divided differences. 

For two points, (x1, y1), and (x2, Yi) ,  the first divided difference, 

written as f [x2, xi], is defined as the slope of the line connecting the 

two points: 

(6.57) 

The first divided difference is equal to the coefficient a2• 

For three points (x1, y1), (x2, y2), and (x3, y3) the second divided dif­

ference, written as f [x3, x2, xi], is defined as the difference between the 

first divided differences of points (x3, y3), and (x2, Ji), and points 

(x2, y2), and (x1, y1) divided by (x3 -x1): 

� The first divided difference is equal to the coefficient a2.
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A general form of Newton’s polynomial and its coefficients

� For three points (x1, y1), (x2, y2), and (x3, y3) the second divided difference, written
as f [x3, x2, x1], is defined as the difference between the first divided differences of
points (x3, y3), and (x2, y2), and points (x2, y2), and (x1, y1) divided by (x3 − x1):

6.5 Interpolation Using a Single Polynomial 219 

(6.58) 

The second divided difference is thus equal to the coefficient a3 • 
For four points (x1, y1), (x2, Ji), (x3, y3), and (x4, y4) the third 

divided difference, written as f [x4, x3, x2, xi], is defined as the differ­

ence between the second divided differences of points (x2, y2), (x3, y3) 
and (x4, y4), and points (x1, y1), (x2, y2), and (x3, y3) divided by (x4 -x1): 

f [x4, x3, x2] -f [x3, x2, xi] 
f[x4,X3,x2,xil = 

----'-----....;;;;_­X4-X1 

f [x4, X3] -f [x3, X2] f [x3, X2] -f [x2, xi] 

(X4 -X1) (6.59) 

Y4-Y3 Y3-Yi Y3-Y2 Yi-Yi 
X4 -X3 X3 -X2 X3 -X2 X2 -X1 

(x4 -x2) (x3 -x1) 
------------ = a4 

(X4-X1) 

The third divided difference is thus equal to the coefficient a4• 
The next (fourth) divided difference (when five data points are 

given) is: 

If more data points are given, the procedure for calculating higher dif­

ferences continues in the same manner. In general, when n data points 

are given, the procedure starts by calculating ( n - 1) first divided differ­

ences. Then, (n - 2) second divided differences are calculated from the 

first divided differences. This is followed by calculating ( n -3) third 

divided differences from the second divided differences. The process 

ends when one nth divided difference is calculated from two ( n - 1) 
divided differences to give the coefficient an. 

The procedure for finding the coefficients by using divided differ­

ences can be followed in a divided difference table. Such a table for the 

case of five data points is shown in Fig. 6-16. 
In general terms, for n given data points, 

(x1, y1), (x2, Ji), ... , (xn, Yn) , the first divided differences between two 

points (x;, y;), and (xp y1) are given by: 

(6.61) 

� The second divided difference is thus equal to the coefficient a3
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A general form of Newton’s polynomial and its coefficients

� For four points (x1, y1), (x2, y2), (x3, y3), and (x4, y4) the third divided difference, written
as f [x4, x3, x2, x1], is defined as the differ ence between the second divided differences of
points (x2, y2), (x3, y3) and (x4, y4), and points (x1, y1), (x2, y2), and (x3, y3) divided by
(x4 − x1):
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(6.58) 

The second divided difference is thus equal to the coefficient a3 • 
For four points (x1, y1), (x2, Ji), (x3, y3), and (x4, y4) the third 

divided difference, written as f [x4, x3, x2, xi], is defined as the differ­

ence between the second divided differences of points (x2, y2), (x3, y3) 
and (x4, y4), and points (x1, y1), (x2, y2), and (x3, y3) divided by (x4 -x1): 

f [x4, x3, x2] -f [x3, x2, xi] 
f[x4,X3,x2,xil = 

----'-----....;;;;_­X4-X1 

f [x4, X3] -f [x3, X2] f [x3, X2] -f [x2, xi] 

(X4 -X1) (6.59) 

Y4-Y3 Y3-Yi Y3-Y2 Yi-Yi 
X4 -X3 X3 -X2 X3 -X2 X2 -X1 

(x4 -x2) (x3 -x1) 
------------ = a4 

(X4-X1) 

The third divided difference is thus equal to the coefficient a4• 
The next (fourth) divided difference (when five data points are 

given) is: 

If more data points are given, the procedure for calculating higher dif­

ferences continues in the same manner. In general, when n data points 

are given, the procedure starts by calculating ( n - 1) first divided differ­

ences. Then, (n - 2) second divided differences are calculated from the 

first divided differences. This is followed by calculating ( n -3) third 

divided differences from the second divided differences. The process 

ends when one nth divided difference is calculated from two ( n - 1) 
divided differences to give the coefficient an. 

The procedure for finding the coefficients by using divided differ­

ences can be followed in a divided difference table. Such a table for the 

case of five data points is shown in Fig. 6-16. 
In general terms, for n given data points, 

(x1, y1), (x2, Ji), ... , (xn, Yn) , the first divided differences between two 

points (x;, y;), and (xp y1) are given by: 

(6.61) 

� The third divided difference is thus equal to the coefficient a4.
� If more data points are given, the procedure for calculating higher dif ferences continues in

the same manner.
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A general form of Newton’s polynomial and its coefficients220 
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a2 
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Third divided 
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Figure 6-16: Table of divided differences for five data points. 

a5 

I 
f [x5, X4, X3, X2, xi] 

Fourth divided 

difference 

The kth divided difference for second and higher divided differences up 

to the (n -1) difference is given by: 

With these definitions, the (n -1) order Newton's polynomial, Eq. 

( 6.46) is given by: 

f(x)= y = y1+ f [x2, x1](x-x1)+ f [x3, x2, x1](x-x1)(x-x2)+ ... + f [xn, xn-l• .. ., x2, x1](x -x1)(x-x2) ... (x-xn_1) 

y (6.63) 

Notes about Newton's polynomials 

• The spacings between the data points do not have to be the same. 

• For a given set of n points, once the coefficients a1 through an are 

determined, they can be used for interpolation at any point between 

the data points. 

After the coefficients a1 through an are determined (for a given set of n 

points), additional data points can be added (they do not have to be in 

order), and only the additional coefficients have to be determined. 

Example 6-5 shows application of Newton's interpolating polyno­

mials. 
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A general form of Newton’s polynomial and its coefficients

� In general, when n data points are given, the procedure starts by calculating (n− 1)
first divided differ ences. Then, (n− 2) second divided differences are calculated
from the first divided differences. This is followed by calculating (n− 3) third
divided differences from the second divided differences. The process ends when one
nth divided difference is calculated from two (n− 1) divided differences to give the
coefficient an.

� In general terms, for n given data points, (x1, y1), (x2, y2), ... , (xn, yn) , the first
divided differences between two points (xi, yi), and (xj , yj) are given by:
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(6.58) 

The second divided difference is thus equal to the coefficient a3 • 
For four points (x1, y1), (x2, Ji), (x3, y3), and (x4, y4) the third 

divided difference, written as f [x4, x3, x2, xi], is defined as the differ­

ence between the second divided differences of points (x2, y2), (x3, y3) 
and (x4, y4), and points (x1, y1), (x2, y2), and (x3, y3) divided by (x4 -x1): 

f [x4, x3, x2] -f [x3, x2, xi] 
f[x4,X3,x2,xil = 

----'-----....;;;;_­X4-X1 

f [x4, X3] -f [x3, X2] f [x3, X2] -f [x2, xi] 

(X4 -X1) (6.59) 

Y4-Y3 Y3-Yi Y3-Y2 Yi-Yi 
X4 -X3 X3 -X2 X3 -X2 X2 -X1 

(x4 -x2) (x3 -x1) 
------------ = a4 

(X4-X1) 

The third divided difference is thus equal to the coefficient a4• 
The next (fourth) divided difference (when five data points are 

given) is: 

If more data points are given, the procedure for calculating higher dif­

ferences continues in the same manner. In general, when n data points 

are given, the procedure starts by calculating ( n - 1) first divided differ­

ences. Then, (n - 2) second divided differences are calculated from the 

first divided differences. This is followed by calculating ( n -3) third 

divided differences from the second divided differences. The process 

ends when one nth divided difference is calculated from two ( n - 1) 
divided differences to give the coefficient an. 

The procedure for finding the coefficients by using divided differ­

ences can be followed in a divided difference table. Such a table for the 

case of five data points is shown in Fig. 6-16. 
In general terms, for n given data points, 

(x1, y1), (x2, Ji), ... , (xn, Yn) , the first divided differences between two 

points (x;, y;), and (xp y1) are given by: 

(6.61) 
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A general form of Newton’s polynomial and its coefficients

� The kth divided difference for second and higher divided differences up to the
(n− 1) difference is given by:
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a1 

I 
XI Yi 

� 

/ X2 Y2 
� 

/ X3 Y3 " 
X4 Y4 < 
X5 Y5 / 

Data Points 
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a2 

I a3 

a4 f[x2,xi] � I / f[x3,x2,xi]� I 
f[x3,x2] � / f [x4,x3,x2,xi] � 

/ f[X4,X3,X2] � / 
f [x4, X3] � / f [x5, X4, X3, X2] 

f [X5, X4] 

/" f [X5, X4, X3] 

First divided 

difference 

Second divided 

difference 

Third divided 

difference 

Figure 6-16: Table of divided differences for five data points. 

a5 

I 
f [x5, X4, X3, X2, xi] 

Fourth divided 

difference 

The kth divided difference for second and higher divided differences up 

to the (n -1) difference is given by: 

With these definitions, the (n -1) order Newton's polynomial, Eq. 

( 6.46) is given by: 

f(x)= y = y1+ f [x2, x1](x-x1)+ f [x3, x2, x1](x-x1)(x-x2)+ ... + f [xn, xn-l• .. ., x2, x1](x -x1)(x-x2) ... (x-xn_1) 

y (6.63) 

Notes about Newton's polynomials 

• The spacings between the data points do not have to be the same. 

• For a given set of n points, once the coefficients a1 through an are 

determined, they can be used for interpolation at any point between 

the data points. 

After the coefficients a1 through an are determined (for a given set of n 

points), additional data points can be added (they do not have to be in 

order), and only the additional coefficients have to be determined. 

Example 6-5 shows application of Newton's interpolating polyno­

mials. 

� With these definitions, the ( n -1) order Newton’s polynomial, Eq. ( 6. 46) is given
by:
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a2 

I a3 

a4 f[x2,xi] � I / f[x3,x2,xi]� I 
f[x3,x2] � / f [x4,x3,x2,xi] � 

/ f[X4,X3,X2] � / 
f [x4, X3] � / f [x5, X4, X3, X2] 

f [X5, X4] 

/" f [X5, X4, X3] 

First divided 

difference 

Second divided 

difference 

Third divided 

difference 

Figure 6-16: Table of divided differences for five data points. 

a5 

I 
f [x5, X4, X3, X2, xi] 

Fourth divided 

difference 

The kth divided difference for second and higher divided differences up 

to the (n -1) difference is given by: 

With these definitions, the (n -1) order Newton's polynomial, Eq. 

( 6.46) is given by: 

f(x)= y = y1+ f [x2, x1](x-x1)+ f [x3, x2, x1](x-x1)(x-x2)+ ... + f [xn, xn-l• .. ., x2, x1](x -x1)(x-x2) ... (x-xn_1) 

y 

Notes about Newton's polynomials 

• The spacings between the data points do not have to be the same. 

• For a given set of n points, once the coefficients a1 through an are 

determined, they can be used for interpolation at any point between 

the data points. 

After the coefficients a1 through an are determined (for a given set of n 

points), additional data points can be added (they do not have to be in 

order), and only the additional coefficients have to be determined. 

Example 6-5 shows application of Newton's interpolating polyno­

mials. 
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Notes about Newton’s polynomials

� The spacings between the data points do not have to be the same.

� For a given set of n points, once the coefficients a1 through an are determined,
they can be used for interpolation at any point between the data points.

� After the coefficients a1 through an are determined (for a given set of n points),
additional data points can be added (they do not have to be in order), and only the
additional coefficients have to be determined.
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Piecewise (Spline Interpolation)
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