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Google Classrooms

m All the communication will be through Google Classroom:
0 Course materials
0 Assignments
0 Announcements and Notices

= Join the course at https://classroom.google.com/

m Class Code for CSE, Section-F:

0 Joining classroom request will be sent to the email ids or student may joint
through the following course code.

6hkyx6a

® Would you like to code in Python for the topics to be covered in Numerical
Methods?
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Text Books

MERICAL
0DS Text Books:

ENGINEERS

i ® Numerical Methods Using MATLAB by Matthews
and Fink, Pearson Education.

® Numerical Methods for Engineers and Scientists:
An Introduction with Applications using MATLAB,
Amos Gilat and Vish Subramaniam, Wiley.

Credits:
Numerical
Mﬁggggﬁ B 3 credits course,

0 2 Classes/week (1hr/Class),
0 1 Lab/week (2hr/Lab).
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Grading pattern

m Grading pattern: 2

Attendance : 5 Marks

2 Quizzes : 10 Marks
Assignments : 10 Marks
Mid-term examination : 15 Marks
Total Internal : 40 Marks
In lab exam : 15 Marks
Theory exam : 45 Marks
Total External : 60 Marks
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Regarding Attendance and Home Assignments

= Attendance will be taken by calling students name or last three digit of the
registration number.

m Alternatively, attendance will be taken through the Google Classroom.

m Every weekend, home assignment will be shared and the solution is to be
uploaded in the Google classroom before deadline.
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In this course we are going to cover

m Preliminaries

= The Solution of Nonlinear Equations f(z) =0
® The Solution of Linear Systems AX = B

m [nterpolation and Polynomial Approximation
m Curve Fitting

= Numerical Differentiation

® Numerical Integration

® Numerical Optimization

= Solution of Differential Equations

m Solution of Partial Differential Equations

m Eigenvalues and Eigenvectors.
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Why Numerical Methods?

Numerical methods can be used for solution of complex problems.

Make easier to understand and use “canned” software with insight.

Solutions, if not already available, can be created.

® Using numerical methods, we can efficiently learning to use computers.

Reinforce your understanding of mathematics.
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Students will learn

1. A common numerical methods and how they are used to obtain approximate
solutions to otherwise intractable mathematical problems.

2. To apply numerical methods to obtain approximate solutions to mathematical

problems.

3. To derive numerical methods for various mathematical operations and tasks
O interpolation, 0 the solution of linear and nonlinear equations
o differentiation, O the solution of differential equations.

O integration,

4. Analyse and evaluate the accuracy of common numerical methods.
Implement numerical methods in MATLAB/OCTAVE.

6. Write efficient, well-documented MATLAB/OCTAVE code and present
numerical results in an informative way.

g
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A problem and its solution
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Better to start with a problem

= An engineering problem: forces acting on a falling object
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= An engineering problem: forces acting on a falling object
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Better to start with a problem

= An engineering problem: forces acting on a falling object

m The problem can be simplified using Newton's law of
motion.
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Better to start with a problem

= An engineering problem: forces acting on a falling object

m The problem can be simplified using Newton's law of
motion.
O The time rate of change of momentum of a body is equal to
the resultant force acting on it.
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Better to start with a problem

= An engineering problem: forces acting on a falling object

m The problem can be simplified using Newton's law of
motion.
O The time rate of change of momentum of a body is equal to
the resultant force acting on it.

F=Fp+ Fy
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Better to start with a problem

= An engineering problem: forces acting on a falling object

m The problem can be simplified using Newton's law of
motion.

O The time rate of change of momentum of a body is equal to
the resultant force acting on it.

F=Fp+ Fy

F=mg—cv
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Better to start with a problem

= An engineering problem: forces acting on a falling object

m The problem can be simplified using Newton's law of
motion.
O The time rate of change of momentum of a body is equal to
the resultant force acting on it.

F=Fp+ Fy
F=mg—cv
dv
ma = mg — cv a=—
g dt
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Better to start with a problem

= An engineering problem: forces acting on a falling object

m The problem can be simplified using Newton's law of
motion.
O The time rate of change of momentum of a body is equal to
the resultant force acting on it.

F=Fp+ Fy
F=mg—cv
dv
ma = mg — cv a=—
g dt

dv__mg—cv
dt m
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Better to start with a problem

= An engineering problem: forces acting on a falling object

m The problem can be simplified using Newton's law of
motion.

O The time rate of change of momentum of a body is equal to
the resultant force acting on it.

F=Fp+ Fy
F=mg—cv
dv
ma = mg — cv a=—
g dt
d _
L v _mg-o
dt m
N dv_ c
dt_g mv
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Better to start with a problem

= An engineering problem: forces acting on a falling object

{ %zg—%vJ (1)
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Better to start with a problem

= An engineering problem: forces acting on a falling object

{ %zg—%vJ (1)

m Above equation is a model that relates the acceleration of a
falling object to the forces acting on it.
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Better to start with a problem

= An engineering problem: forces acting on a falling object

{ %zg—%vJ (1)

m Above equation is a model that relates the acceleration of a
falling object to the forces acting on it.

m |t is a differential equation because it is written in terms of
the differential rate of change (dv/dt) of the variable that
we are interested in predicting.
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Better to start with a problem
= An engineering problem: forces acting on a falling object
dv c
o g — EU (1)

m Above equation is a model that relates the acceleration of a
falling object to the forces acting on it.

m |t is a differential equation because it is written in terms of

the differential rate of change (dv/dt) of the variable that
we are interested in predicting.

= |f the object is initially at rest (v = 0 at ¢ = 0), the solution
of the equation

{v(t) = % (1- e“c/m)t)} (2)
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Better to start with a problem

= Can you derive v(t) = 2% (1 — e~ (/™)) from 92 = g — £07?

hint: % = g — v is a first order linear differential equation.
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Mathematical Model

o) = 2 (1 - )| o)

®m A mathematical model can be broadly defined as

[Dependent variable = f(independent variable, parameters, forcing action)j

where
0 dependent variable — a characteristic that usually reflects the behavior or state
of the system, e.g., v(t)
O independent variables — are usually dimensions, such as time and space, along
which the system’s behavior is being determined, e.g., ¢
0 parameters — the reflective of the system's properties, e.g., m, ¢
0 forcing functions — external influences acting upon the system, e.g., g
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Example

Example 01: A parachutist of mass 68.1 kg jumps out of a stationary hot air
balloon. Use Eq. (2) to compute velocity prior to opening the parachute. The
drag coefficient is equal to 12.5 kg/s.
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Example

Example 01: A parachutist of mass 68.1 kg jumps out of a stationary hot air
balloon. Use Eq. (2) to compute velocity prior to opening the parachute. The
drag coefficient is equal to 12.5 kg/s.

Solution: Given values, m = 68.1 kg, g = 9.81 m/s, and ¢ = 12.5 kg/s, put in
Eq. (2), we get
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Example

Example 01: A parachutist of mass 68.1 kg jumps out of a stationary hot air
balloon. Use Eq. (2) to compute velocity prior to opening the parachute. The
drag coefficient is equal to 12.5 kg/s.

Solution: Given values, m = 68.1 kg, g = 9.81 m/s, and ¢ = 12.5 kg/s, put in
Eq. (2), we get

u(t) _9.81 x68.1 (1 _ 67(12A5/68.1)t)
12.5
:5344(1 _ 6—0.18355t)

which can be used to compute the velocity
attained after time ¢.
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Example

Example 01: A parachutist of mass 68.1 kg jumps out of a stationary hot air
balloon. Use Eq. (2) to compute velocity prior to opening the parachute. The

drag coefficient is equal to 12.5 kg/s.
Solution: Given values, m = 68.1 kg, g = 9.81 m/s, and ¢ = 12.5 kg/s, put in

Eq. (2), we get

t(s) v (m/s) o(t) :9.81 x 68.1 (1 B 67(12‘5/68'1”)
0 0.00 12.5
2 16.42 =53.44(1 — ¢~ 0-183551)
4 27.80
6 35.68 which can be used to compute the velocity
3 4114 attained after time ¢.
10 44.92
12 47.54
00 53.44
Numerical Methods (MTH4002)
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Analytical Solution

The problem, just we discussed, is solved using analytical approach, which
gives analytical or exact solution.

Drawbacks of the analytical approach:

0 Sometimes difficult to solve

O Many problems cannot be solved using this approach.
0 How to solve a problem using computer?

We need to adopt one or more advanced techniques to find out the solution.

In many of these cases, the only alternative is to develop a numerical solution
that approximates the exact solution.
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Approximate solution

® Now let us try to reformulate the problem to find the approximate solution close to
exact solution.

W) fmmm e

True slope
dv/dt

Av

Approximate slope
Av - it ) = vlt;)

vit) -
! At L=t

i t
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Approximate solution

® Now let us try to reformulate the problem to find the approximate solution close to
exact solution.

® This can be illustrated for Newton's second law
by realizing that the time rate of change of

Vi) Fomm s velocity can be approximated by

True slope
dv/dt

Av

Approximate slope
Av - it ) = vlt;)

vit) -
! At L=t

i t
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Approximate solution

® Now let us try to reformulate the problem to find the approximate solution close to
exact solution.

® This can be illustrated for Newton's second law
by realizing that the time rate of change of

Vi) Fomm s velocity can be approximated by

True slope
dv/dt

dv -~ Av a v(tis1) — v(t;)
dt ~ At b — 1 (4)

Av

Approximate slope
Av - it ) = vlt;)

) -
! At Ly~ 1

where Av and At are differences in velocity and
time, respectively, computed over finite intervals,
v(t;) is velocity at an interval time ¢;, and

v(ti4+1) is the velocity at some later time ¢;4;.

liva t
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Approximate solution

» Note that dv/dt = Av/At is approximate because At is finite.
® Remember from calculus that

dv . Av

dt ~ aiso At
= We can substitute this value in Eq. (1), we get

tin) — olt;
vtivn) —v(ti) _ g— Zu(t)
Liv1 — m

lts) = o6+ [9— (6] (ta = 1) )

m [f the initial velocity at ¢; is available then we can easily compute velocity at

ti—i—l-
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Example

Example 02: A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute
the velocity attained by parachutist after ¢ s using approximation approach. Employ a step size
of 2 s for the calculation.
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Example

Example 02: A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute
the velocity attained by parachutist after ¢ s using approximation approach. Employ a step size
of 2 s for the calculation.

Solution: Assume at to = 0, v(tp) = 0. Given t;.1 —t; = 2 (step size). Compute velocity v(¢;)
at 1 as
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Example

Example 02: A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute
the velocity attained by parachutist after ¢ s using approximation approach. Employ a step size
of 2 s for the calculation.

Solution: Assume at to = 0, v(tp) = 0. Given t;.1 —t; = 2 (step size). Compute velocity v(¢;)

at 1 as 195
U(tl) :’U(to) + [981 — 6811}(t0):| X 2
12.5
v(ty) =0+ [9.81 — 681(0)} X 2=19.62 m/s
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Example

Example 02: A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute
the velocity attained by parachutist after ¢ s using approximation approach. Employ a step size
of 2 s for the calculation.

Solution: Assume at to = 0, v(tp) = 0. Given t;.1 —t; = 2 (step size). Compute velocity v(¢;)

at 1 as 195
U(tl) :’U(to) + [981 — 6811}(t0):| X 2
12.5
v(ty) =0+ [9.81 — 681(0)} X 2=19.62 m/s

For the next interval (from ¢t = 2 to 4s),
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Example

Example 02: A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute
the velocity attained by parachutist after ¢ s using approximation approach. Employ a step size
of 2 s for the calculation.

Solution: Assume at to = 0, v(tp) = 0. Given t;.1 —t; = 2 (step size). Compute velocity v(¢;)

at 1 as 195
U(tl) :’U(to) + [981 — 6811}(t0):| X 2
12.5
v(ty) =0+ [9.81 — 681(0)} X 2=19.62 m/s

For the next interval (from ¢t = 2 to 4s),

U(fg) ZU(tl) + |:981 — é;:iv(tl):l X 2

12.5
v(ty) =19.62 + [9.81 - 681(19.62)] X 2 =32.04 m/s
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Example

Example 02: A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute
the velocity attained by parachutist after ¢ s using approximation approach. Employ a step size
of 2 s for the calculation.

Solution: Assume at to = 0, v(tp) = 0. Given t;.1 —t; = 2 (step size). Compute velocity v(¢;)

at 1 as 195
U(tl) :’U(to) + [981 — 6811}(t0):| X 2
12.5
v(ty) =0+ [9.81 — 681(0)} X 2=19.62 m/s

For the next interval (from ¢t = 2 to 4s),

U(fg) ZU(tl) + |:981 — é;:iv(tl):l X 2

12.5
v(ty) =19.62 + [9.81 - 681(19.62)] X 2 =32.04 m/s
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Example
Example 02: A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute
the velocity attained by parachutist after ¢ s using approximation approach. Employ a step size

of 2 s for the calculation.
Solution: Assume at to = 0, v(tp) = 0. Given t;.1 —t; = 2 (step size). Compute velocity v(¢;)

at 1 as 195
t(s) v (m/s) v(ty) =v(to) + [9.81 - 68.11}@0)} X 2
0 0.00 195 '
2 19.62 v(ty) =0 + {9.81 —~ '(0)} x 2=19.62 m/s
4 32.04 68.1
0 39.90 For the next interval (from ¢t = 2 to 4s),
8 44.87
10 48.02 12.5
12 50.01 v(ta) =v(ty) + [9.81 — 6811)(t1):| X 2
00 53.44 125
v(te) =19.62 + [9.81 — 68'1(19.62)] x 2=232.04 m/s
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Numerical Methods

m Formally, numerical methods used for calculating
Terminal velocity approximated solutions to problems that cannot

™ Approximate, numerical solution be solved (or are difficult to solve) analytically.

a0 ® Numerical methods are techniques by which
mathematical problems are formulated so that
Exact, analytical solution they can be solved with arithmetic operations.

v, m/s
T

20 m Used to develop fast and efficient digital
computations.

® Numerical solutions can be very accurate but in
0 4 8 12 general are not exact. In general, they are always
associated with some error.
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Numerical vs Analytical Methods

m Analytical method is a non-computer method; however, Numerical method
can be implemented on computers.

= Numerical methods are extremely powerful problem-solving tools compare to
analytical methods.
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Numerical vs Analytical Methods

m Analytical method is a non-computer method; however, Numerical method
can be implemented on computers.

= Numerical methods are extremely powerful problem-solving tools compare to
analytical methods.

m Capable of handling large systems of equations, non-linearities, and
complicated geometries that are often impossible to solve analytically.

m Graphical solutions were used to characterize the behavior of systems.
Although graphical techniques can often be used to solve complex problems,
the results are not very precise.
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Numerical vs Analytical Methods

m Analytical method is a non-computer method; however, Numerical method
can be implemented on computers.

= Numerical methods are extremely powerful problem-solving tools compare to
analytical methods.

m Capable of handling large systems of equations, non-linearities, and
complicated geometries that are often impossible to solve analytically.

m Graphical solutions were used to characterize the behavior of systems.
Although graphical techniques can often be used to solve complex problems,
the results are not very precise.

® Numerical methods provide a vehicle for you to reinforce your understanding

of mathematics and use of computers because a function of numerical
methods can reduce higher mathematics to basic arithmetic operations.
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Error in Numerical Solutions
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Error in Numerical Solutions

® |n general, numerical solutions are always
associated with some error.

m \We have seen that the numerical method
captures the essential features of the exact
solution.

W) fmmmmm e e

True slope
dv/dt

Av
m However, because we have employed straight-line
segments in numerical method to approximate a
continuously curving function, there is some

discrepancy between the two results.

Approximate slope
Av _ vlt; 4q) = V()

vi) -
! At =1

fi + @ One way to minimize such discrepancies is to use
a smaller step size.

At
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Error in numerical solutions

m Two kinds of errors are introduced when numerical methods are used for
solving a problem.

Point of
diminishing
returns

® Round-off errors: Occurs because of
the way that machine (or digital
computers) store the number and
execute numerical operations.

log error

Ro,

y

”d"offe,
/'O,.

® Truncation errors: Introduced by the
numerical method.

log step size
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Round-off Error

® A mathematical quantity or real number z is not always stored in the real
form.

= Instead, a machine (or computer) store or process a number in a standard
form to support a trade-off between range and precision.

mantissa x 10%Penen or mantissa x 2*Ponent

m A computer’s representation of real numbers is limited to the fixed precision of
the mantissa. True values are sometimes not stored exactly by a computers
representation.

® Numbers are represented on a computer by a finite number of bits.

Consequently, real numbers that have a mantissa longer than the number of
bits that are available for representing them have to be shortened.
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Round-off Error

® The actual number that is stored in the computer may undergo chopping or
rounding of the last digit.
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Round-off Error

® The actual number that is stored in the computer may undergo chopping or

rounding of the last digit.
m Chopping off the extra digits:
O In chopping, the digits in the mantissa beyond the length, that can be stored,

are simply left out.
0 For illustration, consider the number 2/3. In decimal form with four significant

digits, 2/3 can be written as 0.6666.
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Round-off Error

® The actual number that is stored in the computer may undergo chopping or
rounding of the last digit.
m Chopping off the extra digits:
O In chopping, the digits in the mantissa beyond the length, that can be stored,
are simply left out.
0 For illustration, consider the number 2/3. In decimal form with four significant
digits, 2/3 can be written as 0.6666.
® Rounding:
0 In rounding, the last digit, that is stored, is rounded. Ex: 2/3 can be written as
0.6667
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Round-off Error

® The actual number that is stored in the computer may undergo chopping or
rounding of the last digit.
m Chopping off the extra digits:
O In chopping, the digits in the mantissa beyond the length, that can be stored,
are simply left out.
0 For illustration, consider the number 2/3. In decimal form with four significant
digits, 2/3 can be written as 0.6666.
® Rounding:
0 In rounding, the last digit, that is stored, is rounded. Ex: 2/3 can be written as
0.6667
m Either way, such chopping and rounding of real numbers lead to errors in
numerical computations, especially when many operations are performed. This
is called Round-off error. (More details needed)
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Trucation Error

® Truncation error usually refers to errors introduced when a more complicated
mathematical expression is “replaced” with a more elementary formula.
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Trucation Error

® Truncation error usually refers to errors introduced when a more complicated
mathematical expression is “replaced” with a more elementary formula.

m Let us consider an example of the infinite Taylor series expansion of sinusoidal

function

1.3 [E5 1,7 :L,Q [EH

sin(x):x—§+a—ﬁ+a_ﬁ+... (6)

might be replaced with just the first one or two terms.
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Trucation Error

® Truncation error usually refers to errors introduced when a more complicated
mathematical expression is “replaced” with a more elementary formula.

m Let us consider an example of the infinite Taylor series expansion of sinusoidal

function

1.3 [E5 1,7 :L,Q [EH

sin(x):x—§+a—ﬁ+a_ﬁ+... (6)

might be replaced with just the first one or two terms.

m The truncation error is dependent on the specific numerical method or
algorithm used to solve a problem.
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Truncation Error

m For example, if only the first term is used in Taylor series expansion of
sinusoidal function

T T
in () = I — 0.5235988
Sl (6) 6

Errune = 0.5 —0.5235988 = —0.0235988
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Truncation Error

m For example, if only the first term is used in Taylor series expansion of
sinusoidal function

T T
in () = I — 0.5235988
Sl (6) 6

Errune = 0.5 —0.5235988 = —0.0235988

® |f two terms of the Taylor's series are used
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Truncation Error

m For example, if only the first term is used in Taylor series expansion of
sinusoidal function

T T
in () = I — 0.5235988
Sl (6) 6

Errune = 0.5 —0.5235988 = —0.0235988

® |f two terms of the Taylor's series are used

_m\ 7w (w/6)*
sin (g) = T — T = 04996742

Errune = 0.5 —0.4996742 = 0.0003258
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Exercise Problem

Question 01: The Taylor series expansion of cos(x) is given by:

332 374 .776 .1'8 xlO

—1- = ST 7

cos(x) 5 I = T + T~ 101 +. (7)

Use the first three terms to calculate the value of cos(m/4). Use the decimal

format with six significant digits (apply rounding at each step). Calculate
the truncation error.

Solution: Can you do it?
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Number Representation on a Computer
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Representation of numbers on a computer

®m Numbers can be represented in various forms using bases such as 10, 2, 8, etc.
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Representation of numbers on a computer

®m Numbers can be represented in various forms using bases such as 10, 2, 8, etc.
0 Decimal representation: Uses ten digits 0,1,...,9. A number is written by a

sequence of digits that correspond to multiples of powers of 10.
10* 10° 10 10! 10° 107 10% 103 107

bbb b

6 0 7 2 4.3 1 2 3

6 X104 0 X 103+ 7 X102+ 2 X 10+ 4 X 10%+ 3% 10"+ 1 x 102+ 2 X 107+ 5 x 10™= 60,724.3125
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Representation of numbers on a computer

®m Numbers can be represented in various forms using bases such as 10, 2, 8, etc.
0 Decimal representation: Uses ten digits 0,1,...,9. A number is written by a

sequence of digits that correspond to multiples of powers of 10.
10* 10 10* 10! 10° 107 102 107 10*

A

6 0 7 2 4.3 1 2 3

6 X104 0 X 103+ 7 X102+ 2 X 10+ 4 X 10%+ 3% 10"+ 1 x 102+ 2 X 107+ 5 x 10™= 60,724.3125

. . Bla(s)e Base 2
|
0 Binary representation Mg g2 g g
2o L L ogr oF 1 0 0 0 1
2 0o 0 1 0
b |
4 0o 1 0 O
1 0 T 1 5 0o 1 0 1
6 0o 1 1 0
- o & 0o 1 1 1
124 4+0%x23 +0x 2%+ 1x2' + 1x2°+ 1x 271 + 0x 22 + 1x 2? —
9 1 0 0 1
10 1 0 1 0

1X16+0X8+0x4+1x2+1X1+1x0.5+0%x0.25+1x 0.125 = 19.625
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Representation of numbers on a computer

® Can you write the number 60,724.3125 in binary form?
215 214 213 212 21] 2]0 29 23 27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4

R

1 1 1 0 1 1 0 o 1 1 o0 1 0 0,0 1 0 1

1x 25+ 1x2M + 1% 2B +0x22 + 1x 21 + 1% 210+ 0x2° + 1x 28 +0x 27 +0x 28 + 1x 2°

-3

+1x2 r0x23+1x22 4 0x2l +0x20+0x 2 +1x 22+ 0x 23+ 1x 274 = 607243125
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Representation of numbers on a computer

® Can you write the number 60,724.3125 in binary form?
215 214 213 212 21] 2]0 29 23 27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4

R

1 1 1 0 1 1 0 o 1 1 o0 1 0 0,0 1 0 1

1x 25+ 1x2M + 1% 2B +0x22 + 1x 21 + 1% 210+ 0x2° + 1x 28 +0x 27 +0x 28 + 1x 2°

B34 1x 2% = 607243125

+1x2 r0x23 +1x 22+ 0x2l +0x20+0x 2 +1x 22+ 0x 2
m Computers store and process numbers in binary (base 2) form. Each binary digit

(one or zero) is called a bit (for binary digit).
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Representation of numbers on a computer

® Can you write the number 60,724.3125 in binary form?
215 214 213 212 21] 2]0 29 23 27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4

R

1 1 1 0 1 1 0 0 1 1 0 1 0 0,0 1 0 1

1x 25+ 1x2M + 1% 2B +0x22 + 1x 21 + 1% 210+ 0x2° + 1x 28 +0x 27 +0x 28 + 1x 2°

3

+1x2 r0x23+1x22 4 0x2l +0x20+0x 2 +1x 22+ 0x 23+ 1x 274 = 607243125

m Computers store and process numbers in binary (base 2) form. Each binary digit
(one or zero) is called a bit (for binary digit).

m Scientific Notation: A standard way to present a real number, called scientific
notation, is obtained by shifting the decimal point and supplying an appropriate

power of 10.
0.0000747 = 7.47 x 1075

31.4159265 = 3.14159265 x 10 (8)
9,700, 000,000 = 9.7 x 10°
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Number Representation
0000000000000 00000

Floating point representation

®m To accommodate large and small numbers, real numbers are written in
floating-point representation.

m Decimal floating point representation has the form
d.dddddd x 107 (9)

The decimal floating point representation also known as scientific notation.
The number 0.dddddd is called the mantissa and p is called exponent.
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Floating point represenation

Example 04: Floating Point Addition
Add the following two decimal numbers in scientific notation:
8.70 x 107! with 9.95 x 10!

Dr. Kundan Kumar Numerical Methods (MTH4002)
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Floating point representation

m Binary floating point representation has the form:
1.bbbbbb x 2% (b is a binary digit) (10)

® |n this form, the mantissa is .bbbbbb , and the power of 2 is called the
exponent.

m Both the mantissa and the exponent are written in a binary form.

® The form in Eq. (4) is obtained by normalizing the number (when it is written
in the decimal form) with respect to the largest power of 2 that is smaller
than the number itself.

® To store numbers accurately, computers must have floating-point binary
numbers with at least 24 binary bits used for the mantissa; this translates to
about seven decimal places. If a 32-bit mantissa is used, numbers with nine
decimal places can be stored.
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Floating point representation

[ Example 04: Write the number 50 in binary floating point representation. ]
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[ Example 05: Perform 0.5 4+ (—0.4375) {Addition in binary} ]
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Exercise Problem

Question 2: Compute (75 + £) + ¢ if a computer had only a 4-bit mantissa
and Exponent of n € {—3,—-2,-1,0,1,2,3,4}.

Numerical Methods (MTH4002)
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Computer Floating-Point Numbers

m Computers have both an integer mode and a floating-point mode for
representing numbers.

® The integer mode is used for performing calculations that are known to be
integer valued and has limited usage for numerical analysis.

m Floating-point numbers are used for scientific and engineering applications.
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Computer Floating-Point Numbers

m Computers have both an integer mode and a floating-point mode for
representing numbers.

® The integer mode is used for performing calculations that are known to be
integer valued and has limited usage for numerical analysis.

m Floating-point numbers are used for scientific and engineering applications.

m The computer stores the values of the exponent and mantissa separately,
while the leading 1 in front of the decimal point is not stored.
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Computer Floating-Point Numbers

m Computers have both an integer mode and a floating-point mode for
representing numbers.

® The integer mode is used for performing calculations that are known to be
integer valued and has limited usage for numerical analysis.

m Floating-point numbers are used for scientific and engineering applications.
m The computer stores the values of the exponent and mantissa separately,
while the leading 1 in front of the decimal point is not stored.

» According to the IEEE-754 standard (1985), computers store numbers and
carry out calculations in

0 Single precision (32 bit representation)
0 Double precision (64 bit representation)
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Storing a number in computer memory: |EEE-754 standard

= In single precision, the numbers are stored in a string of 32 bits (4 bytes), and
in double precision in a string of 64 bits (8 bytes).

= In both cases, the first bit stores the sign (0 corresponds to + and 1
corresponds to —) of the number.

® The next 8 bits in single precision (11 bits in double precision) are used for
storing the exponent.

= The following 23 bits in single precision (52 bits in double precision) are used
for storing the mantissa.

zlt) 29 2! 21 2I] 2-1 2-2 2-3 2—50 2—51 2—52
1// 1// 1// 1// 1// 1// 1// 1// 1// 1// 1// 1//
70170{70|70| ==~ |70[70}70]70[/70] = oo~ 7070170
t H# # i}
Sign Exponent + bias Mant'lSSa
1 bit 11 bits 52 bits
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Storing a number in computer memory: |EEE-754 standard

® The value of the mantissa is in a binary form. The value of the exponent is
entered with a bias. A bias means that a constant is added to the value of the
exponent.
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Number Representation
00000000000 e000000

Storing a number in computer memory: |EEE-754 standard

® The value of the mantissa is in a binary form. The value of the exponent is
entered with a bias. A bias means that a constant is added to the value of the
exponent.

® The bias is introduced in order to avoid using one of the bits for the sign of
the exponent (since the exponent can be positive or negative).

= |n binary notation, the largest number that can be written with 11 bits is 2047
(when all 11 digits are 1).
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Storing a number in computer memory: |EEE-754 standard

® The value of the mantissa is in a binary form. The value of the exponent is
entered with a bias. A bias means that a constant is added to the value of the
exponent.

® The bias is introduced in order to avoid using one of the bits for the sign of
the exponent (since the exponent can be positive or negative).

= |n binary notation, the largest number that can be written with 11 bits is 2047
(when all 11 digits are 1).

® |n this case, the bias 1023 is used, which means that if, for example, the
exponent is 4, then the value that is stored is 4 4+ 1023 = 1027.
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Storing a number in computer memory: |EEE-754 standard

® The value of the mantissa is in a binary form. The value of the exponent is
entered with a bias. A bias means that a constant is added to the value of the
exponent.

® The bias is introduced in order to avoid using one of the bits for the sign of
the exponent (since the exponent can be positive or negative).

= |n binary notation, the largest number that can be written with 11 bits is 2047
(when all 11 digits are 1).

® |n this case, the bias 1023 is used, which means that if, for example, the
exponent is 4, then the value that is stored is 4 4+ 1023 = 1027.

m Smallest exponent that can be stored by the computer is —1023, and the
largest is 1024 (which will be stored as 2047).
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Storing a number in computer memory: |EEE-754 standard

® However, the smallest and largest values of the exponent plus bias are reserved
for zero and infinity (Inf) or not-a-number (NaN) due to invalid mathematical
operation.
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Storing a number in computer memory: |EEE-754 standard

® However, the smallest and largest values of the exponent plus bias are reserved
for zero and infinity (Inf) or not-a-number (NaN) due to invalid mathematical
operation.

® The 11 bits for the exponent plus bias store values between —1023 and 1024.

® |f the exponent plus bias and mantissa are both zero, then the number
actually stored is 0.
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Storing a number in computer memory: |EEE-754 standard

® However, the smallest and largest values of the exponent plus bias are reserved
for zero and infinity (Inf) or not-a-number (NaN) due to invalid mathematical
operation.

® The 11 bits for the exponent plus bias store values between —1023 and 1024.
® |f the exponent plus bias and mantissa are both zero, then the number
actually stored is 0.

® |f the exponent plus bias is 2047 the number stored is Inf if the mantissa is
zero, and It is NaN if the mantissa is not zero.
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Storing a number in computer memory: |EEE-754 standard

® However, the smallest and largest values of the exponent plus bias are reserved
for zero and infinity (Inf) or not-a-number (NaN) due to invalid mathematical
operation.

® The 11 bits for the exponent plus bias store values between —1023 and 1024.

® |f the exponent plus bias and mantissa are both zero, then the number
actually stored is 0.

® |f the exponent plus bias is 2047 the number stored is Inf if the mantissa is
zero, and It is NaN if the mantissa is not zero.

® |n single precision, 8 bits are allocated to the value of the exponent and the
bias is 127.
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Example 07: How the number 22.5 can be stored in double precision accord-
ing to the IEEE-754 standard.
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Example

Example 07: How the number 22.5 can be stored in double precision accord-
ing to the IEEE-754 standard.

Solution: First, the number is normalized:

22.5 4

o1 = 1.40625 x 2
In double precision, the exponent with the 2% bias is 4 + 1023 = 1027, which is stored in binary
form as 10000000011. The mantissa is 0.40625, which is stored in binary form as

.01101000....000. The storage of the number is illustrated below

oft{ofofojofofofofoft]t|o|t|tfo|t|ofolafo| ... [ofo]ofo

t i # 4
Sign Exponent + bias Mantissa
s 11 bits 52 bits
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Limitations

® The smallest positive number that can be expressed in double precision is:
27107 2.2 x 107°%

This means that there is a (small) gap between zero and the smallest number
that can be stored on the computer. Attempts to define a number in this gap
causes an underflow error. (In the same way, the closest negative number to
zero is —2.2 x 1073%),
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Limitations

® The smallest positive number that can be expressed in double precision is:
27107 2.2 x 107°%

This means that there is a (small) gap between zero and the smallest number
that can be stored on the computer. Attempts to define a number in this gap
causes an underflow error. (In the same way, the closest negative number to
zero is —2.2 x 1073%),

m The largest positive number that can be expressed in double precision is

approximately: f
21! ~ 1.8 x 10*®

Attempts to define a larger number causes overflow error. (The same applies
to numbers smaller than —210%4))
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Limitations

~-1.8x10%%8 ~-22x10308 52107308 ~1.8x10%%8

Q r/ \ 0 r/ \ (+)

t [t ; \ i
/ Range of numbers that Range of numbers that

Overflow Overflow
can be represented Underflow can be represented

® Since a finite number of bits is used, not every number can be accurately
written in binary form.
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Limitations

~-1.8x10%%8 ~-22x10308 52107308 ~1.8x10%%8

Q r/ \ 0 r/ \ 52

t [t ; \
/ Range of numbers that Range of numbers that

Overflow Overflow
can be represented Underflow can be represented

® Since a finite number of bits is used, not every number can be accurately
written in binary form.

® For example, the number 0.1 cannot be represented exactly in finite binary
format when single precision is used. To be written in binary floating point
representation, 0.1 is normalized: 0.1 = 1.6 x 27, The exponent —4 (with a
bias) can be stored exactly, but the mantissa 0.6 cannot be written exactly in
a binary format that uses 23 bits.
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Limitations

® The interval between numbers that can be represented depends on their
magnitude. In double precision, the smallest value of the mantissa that can be
stored is 27°2 ~ 2.22 x 10716,

m For numbers of the order of 1, the smallest difference between two numbers
that can be represented in double precision is then 2.22 x 1076, This value is
also defined as the machine epsilon in double precision.
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Limitations

® The interval between numbers that can be represented depends on their

magnitude. In double precision, the smallest value of the mantissa that can be
stored is 27°2 ~ 2.22 x 10716,

m For numbers of the order of 1, the smallest difference between two numbers
that can be represented in double precision is then 2.22 x 1076, This value is
also defined as the machine epsilon in double precision.

® For single precision the smallest difference between two number is
1.1920929 x 1077,
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Smaller than smallest postive number

Mot all real numbers
in the range are representable

'Nmax 'Nmin +Nmin +Nma:-c

5]

“Doax “Dmin +Dmin +Dgax

Denormalized floating-point numbers
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Function

= A function written as y = f(x) associates a unique number y (dependent
variable) with each value of z (independent variable).

® Domain: the span of values that x can have from its minimum to its

maximum value. x y
X
m Range: the span of the corresponding values of . Independent Dependent

variable variable
® The domain and range of the variables are also called intervals.
® When the interval includes the endpoints (the first and last values of the
variable), then it is called a closed interval, [a, b]; when the endpoints are not
included, the interval is called an open interval,(a,b). Where a and b are
endpoints of the interval of x.

T = f(z,y,z), function can have more than one independent variable.
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Limit of a function

= If a function f(z) comes arbitrarily close to a single number L as = approaches
a number a from either the right side or the left side, then the limit of f(x) is
said to approach L as x approaches a. Symbolically, the limit is expressed by:

Lhm f(@) = f(a) = L} (11)

rT—ra

= The formal definition states that if f(z) is a function defined on an open
interval containing a and L is a real number, then for each number € > 0,
there exists a number § > 0 such that if 0 < |z —a| < 0 then |f(x) — L| <e.
Since d can be chosen to be arbitrarily small, f(z) can be made to approach
the limit L as closely as desired.
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Continuity of a function

m A function f(x) is said to be continuous at = = a if the following three
conditions are satisfied:
(1) f(a) exists,
(2) limg_q f(z) exists, and
(3) limg—q f(2) = f(a)

= A function is continuous on an open interval (a,b) if it is continuous at each
point in the interval.

= A function that is continuous on the entire real axis (—o0, o) is said to be
everywhere continuous.

® Numerically, continuity means that small variations in the independent variable
give small variations in the dependent variable.
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Intermediate value theorem

® The intermediate value theorem is a useful theorem about the behavior of a
function in a closed interval.

» Formally, it states that if f(x) is continuous on the closed interval [a,b] and
M is any number between f(a) and f(b), then there exists at least one
number ¢ in [a, b] such that f(c) = M

® The intermediate value theorem implies that the graph of a continuous
function cannot have a vertical jump.
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Derivatives of a function

m The ordinary derivative, first derivative, or, simply, derivative of a function
/ df

y = f(z) at a point x = a in the domain of f(z) is denoted by Y or
f'(a), and is defined as:
@ = f’(a) — lim f((E) — f(a)
dx r—a T—a T —a
1 = The derivative of the function f(z) at the point x = a is the

slope of the tangent to the curve y = f(x) at that point.

m A function must be continuous before it can be
differentiable.

|
|
|
|
|

[
I |
| . . . . .
! Ll oz m A function that is continuous and differentiable over a
a X X X X . . . .
Point x approaches point a certain interval is said to be smooth.
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Derivatives of a function

m There are two important ways to interpret the first derivative of a function.

0 As the slope of the tangent to the curve described by y = f(x) at a point which
is very useful in finding the maximum or minimum of the curve y = f(x) since
the slope (and hence the first derivative) must be zero at those points.

0 The second interpretation of the derivative is as the rate of change of the
function y = f(x) with respect to z. In other words, % represents how fast y
changes as x is changed.

m Higher-order derivatives may be obtained by successive application of first
order derivative.
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Mean value theorem for derivatives

m Formally, it states that if f(x) is a continuous function on the closed interval
[a, b] and differentiable on the open interval (a,b) , then there exists a number
¢ within the interval, ¢ € (a,b), such that:

f/(c):;i_z i :f(bl)):i‘(a)

@

B Simply stated, the mean value theorem for derivatives states that
within the interval there exists a point ¢ such that the value of the
derivative of f(x) is exactly equal to the slope of the secant line
joining the endpoints (a, f(a)), and (b, f(b)).

B The mean value theorem is very useful in numerical analysis when
finding bounds for the order of magnitude of numerical error for
different methods.
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Type of Problems

® Linear algebraic equations:
Given the a's and ¢'s, Solve

m Roots of equations:
Solve f(z) =0 for . a1ty + a1ty =
10 (2171 + Q22T = C2

for the z's
X2
Root

—————— Solution

X1
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Type of Problems

m Curve fitting

§E)
= Optimization: Determine x
that gives optimum f(z). Regression
1)
X

S Interpolation
Minimum
X
X
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Type of Problems

m Curve fitting

= Integration .

1= / )

Regression

find the area under the curve. x

fx) Interpolation
1
X
X

Dr. Kundan Kumar Numerical Methods (MTH4002)
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Type of Problems

= Ordinary differential equations

Given

dy Ay
—_— N — = t
v GE)

solve for y as a funtion of t.

Ui = U: —+ f(fn 7/;\/\7L,

y

Slope =
(D)
A

Dr. Kundan Kumar

Numerical Problems

[e]e]e] )

m Partial differential equations

Given

u  S%u

522 + 6_3/2 = f(z,y)
solve for v as a function of x«
and y.

)

X
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