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Google Classrooms
� All the communication will be through Google Classroom:

� Course materials
� Assignments
� Announcements and Notices

� Join the course at https://classroom.google.com/
� Class Code for CSE, Section-F:

� Joining classroom request will be sent to the email ids or student may joint
through the following course code.

� Would you like to code in Python for the topics to be covered in Numerical
Methods?

3/61 Dr. Kundan Kumar Numerical Methods (MTH4002)

https://classroom.google.com/


Course Details A problem and its solution Error in Numerical Solutions Number Representation Mathematical Background Numerical Problems References

Text Books

NUMERICAL 

METHODS 
FOR ENGINEERS 

AND SCl:ENTISTS 

3rd Edition 

An Introduction with Appliications Using MATLAB® 

Text Books:

� Numerical Methods Using MATLAB by Matthews
and Fink, Pearson Education.

� Numerical Methods for Engineers and Scientists:
An Introduction with Applications using MATLAB,
Amos Gilat and Vish Subramaniam, Wiley.

Credits:

� 3 credits course,

� 2 Classes/week (1hr/Class),
� 1 Lab/week (2hr/Lab).
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Grading pattern

� Grading pattern: 2

Attendance : 5 Marks

2 Quizzes : 10 Marks

Assignments : 10 Marks

Mid-term examination : 15 Marks

Total Internal : 40 Marks

In lab exam : 15 Marks

Theory exam : 45 Marks

Total External : 60 Marks
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Regarding Attendance and Home Assignments

� Attendance will be taken by calling students name or last three digit of the
registration number.

� Alternatively, attendance will be taken through the Google Classroom.

� Every weekend, home assignment will be shared and the solution is to be
uploaded in the Google classroom before deadline.
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In this course we are going to cover

� Preliminaries

� The Solution of Nonlinear Equations f(x) = 0

� The Solution of Linear Systems AX = B

� Interpolation and Polynomial Approximation

� Curve Fitting

� Numerical Differentiation

� Numerical Integration

� Numerical Optimization

� Solution of Differential Equations

� Solution of Partial Differential Equations

� Eigenvalues and Eigenvectors.
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Why Numerical Methods?

� Numerical methods can be used for solution of complex problems.

� Make easier to understand and use “canned” software with insight.

� Solutions, if not already available, can be created.

� Using numerical methods, we can efficiently learning to use computers.

� Reinforce your understanding of mathematics.
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Students will learn

1. A common numerical methods and how they are used to obtain approximate
solutions to otherwise intractable mathematical problems.

2. To apply numerical methods to obtain approximate solutions to mathematical
problems.

3. To derive numerical methods for various mathematical operations and tasks
� interpolation,
� differentiation,
� integration,

� the solution of linear and nonlinear equations
� the solution of differential equations.

4. Analyse and evaluate the accuracy of common numerical methods.

5. Implement numerical methods in MATLAB/OCTAVE.

6. Write efficient, well-documented MATLAB/OCTAVE code and present
numerical results in an informative way.
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A problem and its solution
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Better to start with a problem
� An engineering problem: forces acting on a falling object

 1.1 A SIMPLE MATHEMATICAL MODEL 13

 The second law can be recast in the format of Eq. (1.1) by merely dividing both 
sides by m to give

a 5
F
m

 (1.3)

where a 5 the dependent variable refl ecting the system’s behavior, F 5 the forcing 
function, and m 5 a parameter representing a property of the system. Note that for this 
simple case there is no independent variable because we are not yet predicting how 
 acceleration varies in time or space.
 Equation (1.3) has several characteristics that are typical of mathematical models of 
the physical world:

1. It describes a natural process or system in mathematical terms.
2. It represents an idealization and simplifi cation of reality. That is, the model ignores 

negligible details of the natural process and focuses on its essential manifestations. 
Thus, the second law does not include the effects of relativity that are of minimal 
importance when applied to objects and forces that interact on or about the earth’s 
surface at velocities and on scales visible to humans.

3. Finally, it yields reproducible results and, consequently, can be used for predictive 
purposes. For example, if the force on an object and the mass of an object are known, 
Eq. (1.3) can be used to compute acceleration.

 Because of its simple algebraic form, the solution of Eq. (1.2) can be obtained eas-
ily. However, other mathematical models of physical phenomena may be much more 
complex, and either cannot be solved exactly or require more sophisticated mathematical 
techniques than simple algebra for their solution. To illustrate a more complex model of 
this kind, Newton’s second law can be used to determine the terminal velocity of a free-
falling body near the earth’s surface. Our falling body will be a parachutist (Fig. 1.2). A 
model for this case can be derived by expressing the acceleration as the time rate of 
change of the velocity (dy�dt) and substituting it into Eq. (1.3) to yield

dy

dt
5

F
m

 (1.4)

where y is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of 
change of the velocity is equal to the net force acting on the body. If the net force is 
positive, the object will accelerate. If it is negative, the object will decelerate. If the net 
force is zero, the object’s velocity will remain at a constant level.
 Next, we will express the net force in terms of measurable variables and parameters. For 
a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two 
opposing forces: the downward pull of gravity FD and the upward force of air resistance FU:

F 5 FD 1 FU (1.5)

If the downward force is assigned a positive sign, the second law can be used to formu-
late the force due to gravity, as

FD 5 mg (1.6)

where g 5 the gravitational constant, or the acceleration due to gravity, which is approxi-
mately equal to 9.81 m/s2.

FU

FD

FIGURE 1.2
Schematic diagram of the 
forces acting on a falling 
 parachutist. FD is the downward 
force due to gravity. FU is the 
upward force due to air 
resistance.
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� The problem can be simplified using Newton’s law of
motion.
� The time rate of change of momentum of a body is equal to

the resultant force acting on it.

F = FD + FU

F = mg − cv

ma = mg − cv

[
a =

dv

dt

]
⇒ dv

dt
=

mg − cv

m

⇒ dv

dt
= g − c

m
v
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negligible details of the natural process and focuses on its essential manifestations. 
Thus, the second law does not include the effects of relativity that are of minimal 
importance when applied to objects and forces that interact on or about the earth’s 
surface at velocities and on scales visible to humans.

3. Finally, it yields reproducible results and, consequently, can be used for predictive 
purposes. For example, if the force on an object and the mass of an object are known, 
Eq. (1.3) can be used to compute acceleration.

 Because of its simple algebraic form, the solution of Eq. (1.2) can be obtained eas-
ily. However, other mathematical models of physical phenomena may be much more 
complex, and either cannot be solved exactly or require more sophisticated mathematical 
techniques than simple algebra for their solution. To illustrate a more complex model of 
this kind, Newton’s second law can be used to determine the terminal velocity of a free-
falling body near the earth’s surface. Our falling body will be a parachutist (Fig. 1.2). A 
model for this case can be derived by expressing the acceleration as the time rate of 
change of the velocity (dy�dt) and substituting it into Eq. (1.3) to yield
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where y is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of 
change of the velocity is equal to the net force acting on the body. If the net force is 
positive, the object will accelerate. If it is negative, the object will decelerate. If the net 
force is zero, the object’s velocity will remain at a constant level.
 Next, we will express the net force in terms of measurable variables and parameters. For 
a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two 
opposing forces: the downward pull of gravity FD and the upward force of air resistance FU:

F 5 FD 1 FU (1.5)

If the downward force is assigned a positive sign, the second law can be used to formu-
late the force due to gravity, as

FD 5 mg (1.6)

where g 5 the gravitational constant, or the acceleration due to gravity, which is approxi-
mately equal to 9.81 m/s2.
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� The problem can be simplified using Newton’s law of
motion.
� The time rate of change of momentum of a body is equal to

the resultant force acting on it.

F = FD + FU

F = mg − cv

ma = mg − cv

[
a =

dv

dt

]

⇒ dv

dt
=

mg − cv

m

⇒ dv

dt
= g − c

m
v
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change of the velocity is equal to the net force acting on the body. If the net force is 
positive, the object will accelerate. If it is negative, the object will decelerate. If the net 
force is zero, the object’s velocity will remain at a constant level.
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a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two 
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where y is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of 
change of the velocity is equal to the net force acting on the body. If the net force is 
positive, the object will accelerate. If it is negative, the object will decelerate. If the net 
force is zero, the object’s velocity will remain at a constant level.
 Next, we will express the net force in terms of measurable variables and parameters. For 
a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two 
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where a 5 the dependent variable refl ecting the system’s behavior, F 5 the forcing 
function, and m 5 a parameter representing a property of the system. Note that for this 
simple case there is no independent variable because we are not yet predicting how 
 acceleration varies in time or space.
 Equation (1.3) has several characteristics that are typical of mathematical models of 
the physical world:

1. It describes a natural process or system in mathematical terms.
2. It represents an idealization and simplifi cation of reality. That is, the model ignores 

negligible details of the natural process and focuses on its essential manifestations. 
Thus, the second law does not include the effects of relativity that are of minimal 
importance when applied to objects and forces that interact on or about the earth’s 
surface at velocities and on scales visible to humans.

3. Finally, it yields reproducible results and, consequently, can be used for predictive 
purposes. For example, if the force on an object and the mass of an object are known, 
Eq. (1.3) can be used to compute acceleration.

 Because of its simple algebraic form, the solution of Eq. (1.2) can be obtained eas-
ily. However, other mathematical models of physical phenomena may be much more 
complex, and either cannot be solved exactly or require more sophisticated mathematical 
techniques than simple algebra for their solution. To illustrate a more complex model of 
this kind, Newton’s second law can be used to determine the terminal velocity of a free-
falling body near the earth’s surface. Our falling body will be a parachutist (Fig. 1.2). A 
model for this case can be derived by expressing the acceleration as the time rate of 
change of the velocity (dy�dt) and substituting it into Eq. (1.3) to yield
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where y is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of 
change of the velocity is equal to the net force acting on the body. If the net force is 
positive, the object will accelerate. If it is negative, the object will decelerate. If the net 
force is zero, the object’s velocity will remain at a constant level.
 Next, we will express the net force in terms of measurable variables and parameters. For 
a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two 
opposing forces: the downward pull of gravity FD and the upward force of air resistance FU:

F 5 FD 1 FU (1.5)

If the downward force is assigned a positive sign, the second law can be used to formu-
late the force due to gravity, as

FD 5 mg (1.6)

where g 5 the gravitational constant, or the acceleration due to gravity, which is approxi-
mately equal to 9.81 m/s2.
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dv

dt
= g − c

m
v (1)

� Above equation is a model that relates the acceleration of a
falling object to the forces acting on it.

� It is a differential equation because it is written in terms of
the differential rate of change (dv/dt) of the variable that
we are interested in predicting.

� If the object is initially at rest (v = 0 at t = 0), the solution
of the equation

v(t) =
gm

c

(
1− e−(c/m)t

)
(2)
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where y is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of 
change of the velocity is equal to the net force acting on the body. If the net force is 
positive, the object will accelerate. If it is negative, the object will decelerate. If the net 
force is zero, the object’s velocity will remain at a constant level.
 Next, we will express the net force in terms of measurable variables and parameters. For 
a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two 
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function, and m 5 a parameter representing a property of the system. Note that for this 
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 acceleration varies in time or space.
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techniques than simple algebra for their solution. To illustrate a more complex model of 
this kind, Newton’s second law can be used to determine the terminal velocity of a free-
falling body near the earth’s surface. Our falling body will be a parachutist (Fig. 1.2). A 
model for this case can be derived by expressing the acceleration as the time rate of 
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where y is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of 
change of the velocity is equal to the net force acting on the body. If the net force is 
positive, the object will accelerate. If it is negative, the object will decelerate. If the net 
force is zero, the object’s velocity will remain at a constant level.
 Next, we will express the net force in terms of measurable variables and parameters. For 
a body falling within the vicinity of the earth (Fig. 1.2), the net force is composed of two 
opposing forces: the downward pull of gravity FD and the upward force of air resistance FU:
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If the downward force is assigned a positive sign, the second law can be used to formu-
late the force due to gravity, as
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where g 5 the gravitational constant, or the acceleration due to gravity, which is approxi-
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where y is velocity (m/s) and t is time (s). Thus, the mass multiplied by the rate of 
change of the velocity is equal to the net force acting on the body. If the net force is 
positive, the object will accelerate. If it is negative, the object will decelerate. If the net 
force is zero, the object’s velocity will remain at a constant level.
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� Above equation is a model that relates the acceleration of a
falling object to the forces acting on it.
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Better to start with a problem
� Can you derive v(t) = gm

c

(
1− e−(c/m)t

)
from dv

dt
= g − c

m
v?

hint: dv
dt

= g − c
m
v is a first order linear differential equation.
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Mathematical Model

v(t) =
gm

c

(
1− e−(c/m)t

)
(3)

� A mathematical model can be broadly defined as

Dependent variable = f(independent variable, parameters, forcing action)

where
� dependent variable → a characteristic that usually reflects the behavior or state

of the system, e.g., v(t)
� independent variables → are usually dimensions, such as time and space, along

which the system’s behavior is being determined, e.g., t
� parameters → the reflective of the system’s properties, e.g., m, c
� forcing functions → external influences acting upon the system, e.g., g
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Example
Example 01: A parachutist of mass 68.1 kg jumps out of a stationary hot air
balloon. Use Eq. (2) to compute velocity prior to opening the parachute. The
drag coefficient is equal to 12.5 kg/s.

Solution: Given values, m = 68.1 kg, g = 9.81 m/s, and c = 12.5 kg/s, put in
Eq. (2), we get

t(s) v (m/s)
0 0.00
2 16.42
4 27.80
6 35.68
8 41.14

10 44.92
12 47.54
∞ 53.44

v(t) =
9.81× 68.1

12.5

(
1− e−(12.5/68.1)t

)
=53.44(1− e−0.18355t)

which can be used to compute the velocity
attained after time t.
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Analytical Solution

� The problem, just we discussed, is solved using analytical approach, which
gives analytical or exact solution.

� Drawbacks of the analytical approach:
� Sometimes difficult to solve
� Many problems cannot be solved using this approach.
� How to solve a problem using computer?

� We need to adopt one or more advanced techniques to find out the solution.

� In many of these cases, the only alternative is to develop a numerical solution
that approximates the exact solution.
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Approximate solution
� Now let us try to reformulate the problem to find the approximate solution close to

exact solution.

� This can be illustrated for Newton’s second law
by realizing that the time rate of change of
velocity can be approximated by

dv

dt
∼=

∆v

∆t
=

v(ti+1)− v(ti)

ti+1 − ti
(4)

where ∆v and ∆t are differences in velocity and
time, respectively, computed over finite intervals,
v(ti) is velocity at an interval time ti, and
v(tt+1) is the velocity at some later time ti+1.
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Approximate solution
� Note that dv/dt ∼= ∆v/∆t is approximate because ∆t is finite.
� Remember from calculus that

dv

dt
= lim

∆t→0

∆v

∆t

� We can substitute this value in Eq. (1), we get

v(ti+1)− v(ti)

ti+1 − ti
= g − c

m
v(ti)

v(ti+1) = v(ti) +
[
g − c

m
v(ti)

]
(ti+1 − ti) (5)

� If the initial velocity at ti is available then we can easily compute velocity at
ti+1.
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Example
Example 02: A parachutist of mass 68.1 kg jumps out of a stationary hot air balloon. Compute
the velocity attained by parachutist after t s using approximation approach. Employ a step size
of 2 s for the calculation.

Solution: Assume at t0 = 0, v(t0) = 0. Given ti+1 − ti = 2 (step size). Compute velocity v(t1)
at t1 as

t(s) v (m/s)
0 0.00
2 19.62
4 32.04
6 39.90
8 44.87

10 48.02
12 50.01
∞ 53.44

v(t1) =v(t0) +

[
9.81− 12.5

68.1
v(t0)

]
× 2

v(t1) =0 +

[
9.81− 12.5

68.1
(0)

]
× 2 = 19.62 m/s

For the next interval (from t = 2 to 4s),

v(t2) =v(t1) +

[
9.81− 12.5

68.1
v(t1)

]
× 2

v(t2) =19.62 +

[
9.81− 12.5

68.1
(19.62)

]
× 2 = 32.04 m/s
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Numerical Methods

� Formally, numerical methods used for calculating
approximated solutions to problems that cannot
be solved (or are difficult to solve) analytically.

� Numerical methods are techniques by which
mathematical problems are formulated so that
they can be solved with arithmetic operations.

� Used to develop fast and efficient digital
computations.

� Numerical solutions can be very accurate but in
general are not exact. In general, they are always
associated with some error.
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Numerical vs Analytical Methods

� Analytical method is a non-computer method; however, Numerical method
can be implemented on computers.

� Numerical methods are extremely powerful problem-solving tools compare to
analytical methods.

� Capable of handling large systems of equations, non-linearities, and
complicated geometries that are often impossible to solve analytically.

� Graphical solutions were used to characterize the behavior of systems.
Although graphical techniques can often be used to solve complex problems,
the results are not very precise.

� Numerical methods provide a vehicle for you to reinforce your understanding
of mathematics and use of computers because a function of numerical
methods can reduce higher mathematics to basic arithmetic operations.
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Error in Numerical Solutions
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Error in Numerical Solutions

� In general, numerical solutions are always
associated with some error.

� We have seen that the numerical method
captures the essential features of the exact
solution.

� However, because we have employed straight-line
segments in numerical method to approximate a
continuously curving function, there is some
discrepancy between the two results.

� One way to minimize such discrepancies is to use
a smaller step size.
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Error in numerical solutions

� Two kinds of errors are introduced when numerical methods are used for
solving a problem.

� Round-off errors: Occurs because of
the way that machine (or digital
computers) store the number and
execute numerical operations.

� Truncation errors: Introduced by the
numerical method.
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Round-off Error

� A mathematical quantity or real number x is not always stored in the real
form.

� Instead, a machine (or computer) store or process a number in a standard
form to support a trade-off between range and precision.

mantissa× 10exponent or mantissa× 2exponent

� A computer’s representation of real numbers is limited to the fixed precision of
the mantissa. True values are sometimes not stored exactly by a computers
representation.

� Numbers are represented on a computer by a finite number of bits.
Consequently, real numbers that have a mantissa longer than the number of
bits that are available for representing them have to be shortened.
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Round-off Error
� The actual number that is stored in the computer may undergo chopping or

rounding of the last digit.

� Chopping off the extra digits:
� In chopping, the digits in the mantissa beyond the length, that can be stored,

are simply left out.
� For illustration, consider the number 2/3. In decimal form with four significant

digits, 2/3 can be written as 0.6666.
� Rounding:

� In rounding, the last digit, that is stored, is rounded. Ex: 2/3 can be written as
0.6667

� Either way, such chopping and rounding of real numbers lead to errors in
numerical computations, especially when many operations are performed. This
is called Round-off error. (More details needed)
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Trucation Error

� Truncation error usually refers to errors introduced when a more complicated
mathematical expression is “replaced” with a more elementary formula.

� Let us consider an example of the infinite Taylor series expansion of sinusoidal
function

sin(x) = x− x3

3!
+
x5

5!
− x7

7!
+
x9

9!
− x11

11!
+ · · · (6)

might be replaced with just the first one or two terms.

� The truncation error is dependent on the specific numerical method or
algorithm used to solve a problem.
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Truncation Error

� For example, if only the first term is used in Taylor series expansion of
sinusoidal function

sin
(π

6

)
=
π

6
= 0.5235988

ETrunc = 0.5− 0.5235988 = −0.0235988

� If two terms of the Taylor’s series are used

sin
(π

6

)
=
π

6
− (π/6)3

3!
= 0.4996742

ETrunc = 0.5− 0.4996742 = 0.0003258
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= 0.4996742

ETrunc = 0.5− 0.4996742 = 0.0003258
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Exercise Problem

Question 01: The Taylor series expansion of cos(x) is given by:

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+
x8

8!
− x10

10!
+ . . . (7)

Use the first three terms to calculate the value of cos(π/4). Use the decimal
format with six significant digits (apply rounding at each step). Calculate
the truncation error.

Solution: Can you do it?
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Representation of numbers on a computer
� Numbers can be represented in various forms using bases such as 10, 2, 8, etc.

� Decimal representation: Uses ten digits 0, 1, ..., 9. A number is written by a
sequence of digits that correspond to multiples of powers of 10.

4 Chapter 1 Introduction 

Governing equation 

The governing equation is derived by applying Newton's second law in the tangential direction: 

de . d2e 
"f.F = -cL--mgsme = mL-

1 dt dt2 (1.3) 

Equation (1.3), which is a second-order, nonlinear, ordinary differential equation, can be written in 

the form: 

d2e de . 
mL-+ cL-+ mgsme = 0 

dt2 dt 
(1.4) 

The initial conditions are that when the motion of the pendulum starts ( t = 0 ), the pendulum is at 

angle 90 and its velocity is zero (released from rest): 

Method of solution 

9(0) = 90 and - = 0 dB i 
dt 

I= 0 
(1.5) 

Equation (1.4) is a nonlinear equation and cannot be solved analytically. However, in part (a) the ini­

tial displacement of the pendulum is 90 = 5°, and once the pendulum is released, the angle as the 

pendulum oscillates will be less than 5°. For this case, Eq. (1.4) can be linearized by assuming that 

sine::::: e. With this approximation, the equation that has to be solved is linear and can be solved ana­

lytically: 

a2e de mL-+cL-+mgS = 0 
dt2 dt 

(1.6) 

with the initial conditions Eq. (1.5). 

In part (b), the initial displacement of the pendulum is 90 = 90° and the equation has to be 

solved numerically. An actual numerical solution for this problem is shown in Example 8-8. 

6 0 

1.2 REPRESENTATION OF NUMBERS ON A 
COMPUTER 

Decimal and binary representation 

Numbers can be represented in various forms. The familiar decimal sys­

tem (base 10) uses ten digits 0, 1, ... , 9. A number is written by a 

sequence of digits that correspond to multiples of powers of 10. As 

shown in Fig. 1-2, the first digit to the left of the decimal point corre-

7 2 4 • 3 I 2 5 

Figure 1-2: Representation of the number 60,724.3125 in the decimal system (base 10). 
� Binary representation
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sponds to 10°. The digit next to it on the left corresponds to 101 , the 

next digit to the left to 102 
, and so on. In the same way, the first digit to 

the right of the decimal point corresponds to 10-1, the next digit to the 

right to 10-2, and so on. 

In general, however, a number can be represented using other bases. 

A form that can be easily implemented in computers is the binary (base 

2) system. In the binary system, a number is represented by using the 

two digits O and 1. A number is then written as a sequence of zeros and 

ones that correspond to multiples of powers of 2. The first digit to the 

left of the decimal point corresponds to 2°. The digit next to it on the 

left corresponds to 21, the next digit to the left to 22, and so on. In the 

same way, the first digit to the right of the decimal point corresponds to 

Figure 1-3: Representation of 

r1, the next digit to the right to r2, and so on. The first ten digits 

1, 2, 3, . . .  , 10 in base 10 and their representation in base 2 are shown in 

Fig. 1-3. The representation of the number 19.625 in the binary system 

is shown in Fig. 1-4. 

numbers in decimal and binary 
forms. 

1 1 

24 
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1 0 0 1 1 1 0 1 

1 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 1 x 2° + 1 x 2-1 + 0 x 2-2 + 1 x 2-3 

1 x16 +Ox 8 + O x4 + 1x2 + 1x1+1x 0.5+Ox0.25 + 1 x 0.125 = 19.625 

Figure 1-4: Representation of the number 19.625 in the binary system (base 2). 

0 0 

Another example is shown in Fig. 1-5, where the number 

60,724.3125 is written in binary form. 

0 0 0 0 0 0 0 

1 x 215 + 1x214 + 1x213+0 x 212 + 1 x 211 + 1x210+0 x 29 + 1x28 +ox 2 7 + 0 x 26 + 1 x 25 

+ 1x24 + 0 x 23 + 1x22 + 0 x 21+ox2° +Ox 2-l + 1x2-2 +Ox 2-3 + 1x2-4 = 60,724.3125 

Figure 1-5: Representation of the number 60,724.3125 in the binary system (base 2). 
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Representation of numbers on a computer
� Numbers can be represented in various forms using bases such as 10, 2, 8, etc.

� Decimal representation: Uses ten digits 0, 1, ..., 9. A number is written by a
sequence of digits that correspond to multiples of powers of 10.

4 Chapter 1 Introduction 

Governing equation 

The governing equation is derived by applying Newton's second law in the tangential direction: 

de . d2e 
"f.F = -cL--mgsme = mL-

1 dt dt2 (1.3) 

Equation (1.3), which is a second-order, nonlinear, ordinary differential equation, can be written in 

the form: 

d2e de . 
mL-+ cL-+ mgsme = 0 

dt2 dt 
(1.4) 

The initial conditions are that when the motion of the pendulum starts ( t = 0 ), the pendulum is at 

angle 90 and its velocity is zero (released from rest): 

Method of solution 

9(0) = 90 and - = 0 dB i 
dt 

I= 0 
(1.5) 

Equation (1.4) is a nonlinear equation and cannot be solved analytically. However, in part (a) the ini­

tial displacement of the pendulum is 90 = 5°, and once the pendulum is released, the angle as the 

pendulum oscillates will be less than 5°. For this case, Eq. (1.4) can be linearized by assuming that 

sine::::: e. With this approximation, the equation that has to be solved is linear and can be solved ana­

lytically: 

a2e de mL-+cL-+mgS = 0 
dt2 dt 

(1.6) 

with the initial conditions Eq. (1.5). 

In part (b), the initial displacement of the pendulum is 90 = 90° and the equation has to be 

solved numerically. An actual numerical solution for this problem is shown in Example 8-8. 
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, and so on. In the same way, the first digit to 

the right of the decimal point corresponds to 10-1, the next digit to the 

right to 10-2, and so on. 

In general, however, a number can be represented using other bases. 

A form that can be easily implemented in computers is the binary (base 

2) system. In the binary system, a number is represented by using the 

two digits O and 1. A number is then written as a sequence of zeros and 

ones that correspond to multiples of powers of 2. The first digit to the 

left of the decimal point corresponds to 2°. The digit next to it on the 
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Fig. 1-3. The representation of the number 19.625 in the binary system 

is shown in Fig. 1-4. 
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Representation of numbers on a computer
� Numbers can be represented in various forms using bases such as 10, 2, 8, etc.

� Decimal representation: Uses ten digits 0, 1, ..., 9. A number is written by a
sequence of digits that correspond to multiples of powers of 10.

4 Chapter 1 Introduction 

Governing equation 

The governing equation is derived by applying Newton's second law in the tangential direction: 

de . d2e 
"f.F = -cL--mgsme = mL-

1 dt dt2 (1.3) 

Equation (1.3), which is a second-order, nonlinear, ordinary differential equation, can be written in 

the form: 

d2e de . 
mL-+ cL-+ mgsme = 0 

dt2 dt 
(1.4) 

The initial conditions are that when the motion of the pendulum starts ( t = 0 ), the pendulum is at 

angle 90 and its velocity is zero (released from rest): 

Method of solution 

9(0) = 90 and - = 0 dB i 
dt 

I= 0 
(1.5) 

Equation (1.4) is a nonlinear equation and cannot be solved analytically. However, in part (a) the ini­

tial displacement of the pendulum is 90 = 5°, and once the pendulum is released, the angle as the 

pendulum oscillates will be less than 5°. For this case, Eq. (1.4) can be linearized by assuming that 

sine::::: e. With this approximation, the equation that has to be solved is linear and can be solved ana­

lytically: 

a2e de mL-+cL-+mgS = 0 
dt2 dt 

(1.6) 

with the initial conditions Eq. (1.5). 

In part (b), the initial displacement of the pendulum is 90 = 90° and the equation has to be 

solved numerically. An actual numerical solution for this problem is shown in Example 8-8. 
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sequence of digits that correspond to multiples of powers of 10. As 
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Figure 1-2: Representation of the number 60,724.3125 in the decimal system (base 10). 
� Binary representation

1.2 Representation of Numbers on a Computer 5 

Base 
10 

., 23 

1 0 

2 0 

3 0 

4 0 

5 0 

6 0 

7 0 

8 1 

9 1 

10 1 

Base 2 

22 21 

0 0 

0 1 

0 1 

1 0 

1 0 

1 1 

1 1 

0 0 

0 0 

0 1 

20 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

sponds to 10°. The digit next to it on the left corresponds to 101 , the 

next digit to the left to 102 
, and so on. In the same way, the first digit to 

the right of the decimal point corresponds to 10-1, the next digit to the 

right to 10-2, and so on. 
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A form that can be easily implemented in computers is the binary (base 
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Representation of numbers on a computer
� Can you write the number 60,724.3125 in binary form?
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Another example is shown in Fig. 1-5, where the number 

60,724.3125 is written in binary form. 

0 0 0 0 0 0 0 

1 x 215 + 1x214 + 1x213+0 x 212 + 1 x 211 + 1x210+0 x 29 + 1x28 +ox 2 7 + 0 x 26 + 1 x 25 

+ 1x24 + 0 x 23 + 1x22 + 0 x 21+ox2° +Ox 2-l + 1x2-2 +Ox 2-3 + 1x2-4 = 60,724.3125 

Figure 1-5: Representation of the number 60,724.3125 in the binary system (base 2). 

� Computers store and process numbers in binary (base 2) form. Each binary digit
(one or zero) is called a bit (for binary digit).

� Scientific Notation: A standard way to present a real number, called scientific
notation, is obtained by shifting the decimal point and supplying an appropriate
power of 10.

0.0000747 = 7.47× 10−5

31.4159265 = 3.14159265× 10
9, 700, 000, 000 = 9.7× 109

(8)

32/61 Dr. Kundan Kumar Numerical Methods (MTH4002)



Course Details A problem and its solution Error in Numerical Solutions Number Representation Mathematical Background Numerical Problems References
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sponds to 10°. The digit next to it on the left corresponds to 101 , the 

next digit to the left to 102 
, and so on. In the same way, the first digit to 

the right of the decimal point corresponds to 10-1, the next digit to the 

right to 10-2, and so on. 

In general, however, a number can be represented using other bases. 

A form that can be easily implemented in computers is the binary (base 

2) system. In the binary system, a number is represented by using the 

two digits O and 1. A number is then written as a sequence of zeros and 

ones that correspond to multiples of powers of 2. The first digit to the 

left of the decimal point corresponds to 2°. The digit next to it on the 

left corresponds to 21, the next digit to the left to 22, and so on. In the 

same way, the first digit to the right of the decimal point corresponds to 

Figure 1-3: Representation of 

r1, the next digit to the right to r2, and so on. The first ten digits 

1, 2, 3, . . .  , 10 in base 10 and their representation in base 2 are shown in 

Fig. 1-3. The representation of the number 19.625 in the binary system 

is shown in Fig. 1-4. 

numbers in decimal and binary 
forms. 

1 1 

24 

+ 
1 0 0 1 1 1 0 1 

1 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 1 x 2° + 1 x 2-1 + 0 x 2-2 + 1 x 2-3 

1 x16 +Ox 8 + O x4 + 1x2 + 1x1+1x 0.5+Ox0.25 + 1 x 0.125 = 19.625 

Figure 1-4: Representation of the number 19.625 in the binary system (base 2). 

0 0 

Another example is shown in Fig. 1-5, where the number 

60,724.3125 is written in binary form. 

0 0 0 0 0 0 0 

1 x 215 + 1x214 + 1x213+0 x 212 + 1 x 211 + 1x210+0 x 29 + 1x28 +ox 2 7 + 0 x 26 + 1 x 25 

+ 1x24 + 0 x 23 + 1x22 + 0 x 21+ox2° +Ox 2-l + 1x2-2 +Ox 2-3 + 1x2-4 = 60,724.3125 

Figure 1-5: Representation of the number 60,724.3125 in the binary system (base 2). � Computers store and process numbers in binary (base 2) form. Each binary digit
(one or zero) is called a bit (for binary digit).

� Scientific Notation: A standard way to present a real number, called scientific
notation, is obtained by shifting the decimal point and supplying an appropriate
power of 10.

0.0000747 = 7.47× 10−5

31.4159265 = 3.14159265× 10
9, 700, 000, 000 = 9.7× 109

(8)
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Floating point representation

� To accommodate large and small numbers, real numbers are written in
floating-point representation.

� Decimal floating point representation has the form

d.dddddd× 10p (9)

The decimal floating point representation also known as scientific notation.
The number 0.dddddd is called the mantissa and p is called exponent.
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Floating point represenation

Example 04: Floating Point Addition
Add the following two decimal numbers in scientific notation:
8.70× 10−1 with 9.95× 101
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Floating point representation
� Binary floating point representation has the form:

1.bbbbbb× 2bbb (b is a binary digit) (10)

� In this form, the mantissa is .bbbbbb , and the power of 2 is called the
exponent.

� Both the mantissa and the exponent are written in a binary form.
� The form in Eq. (4) is obtained by normalizing the number (when it is written

in the decimal form) with respect to the largest power of 2 that is smaller
than the number itself.

� To store numbers accurately, computers must have floating-point binary
numbers with at least 24 binary bits used for the mantissa; this translates to
about seven decimal places. If a 32-bit mantissa is used, numbers with nine
decimal places can be stored.
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Floating point representation

Example 04: Write the number 50 in binary floating point representation.
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Example

Example 05: Perform 0.5 + (−0.4375) {Addition in binary}
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Exercise Problem

Question 2: Compute
(

1
10

+ 1
5

)
+ 1

6
if a computer had only a 4-bit mantissa

and Exponent of n ∈ {−3,−2,−1, 0, 1, 2, 3, 4}.
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Computer Floating-Point Numbers

� Computers have both an integer mode and a floating-point mode for
representing numbers.

� The integer mode is used for performing calculations that are known to be
integer valued and has limited usage for numerical analysis.

� Floating-point numbers are used for scientific and engineering applications.

� The computer stores the values of the exponent and mantissa separately,
while the leading 1 in front of the decimal point is not stored.

� According to the IEEE-754 standard (1985), computers store numbers and
carry out calculations in
� Single precision (32 bit representation)
� Double precision (64 bit representation)
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Storing a number in computer memory: IEEE-754 standard
� In single precision, the numbers are stored in a string of 32 bits (4 bytes), and

in double precision in a string of 64 bits (8 bytes).
� In both cases, the first bit stores the sign (0 corresponds to + and 1

corresponds to −) of the number.
� The next 8 bits in single precision (11 bits in double precision) are used for

storing the exponent.
� The following 23 bits in single precision (52 bits in double precision) are used

for storing the mantissa.

1.2 Representation of Numbers on a Computer 7 

1/ 
/o 
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1 bit 
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/o /o 

1 / 
/o . . . . 

Exponent + bias 
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Storing a number in computer memory 

Once in binary floating point representation, the number is stored in the 
computer. The computer stores the values of the exponent and the man­
tissa separately, while the leading 1 in front of the decimal point is not 
stored. As already mentioned, a bit is a binary digit. The memory in the 
computer is organized in bytes, where each byte is 8 bits. According to 

the IEEE1-754 standard (1985), computers store numbers and carry out 

calculations in single precision2 or in double precision. 3 In single pre­
cision, the numbers are stored in a string of 32 bits (4 bytes), and in 
double precision in a string of 64 bits (8 bytes). In both cases the first 
bit stores the sign (0 corresponds to + and 1 corresponds to -) of the 
number. The next 8 bits in single precision (11 bits in double precision) 
are used for storing the exponent. The following 23 bits in single preci­
sion (52 bits in double precision) are used for storing the mantissa. This 
is illustrated for double precision in Fig. 1-6. 

1/ 1 / 1 / 1 / 1 / 
/o 

I I 
/o /o 10 10 . . . . . 

Mantissa 
52 bits 

. 

1/ 1/ 1/ 
I 

10 /o /o 

Figure 1-6: Storing in double precision a number written in binary floating point representation. 

The value of the mantissa is entered as is in a binary form. The 
value of the exponent is entered with a bias. A bias means that a con­
stant is added to the value of the exponent. The bias is introduced in 
order to avoid using one of the bits for the sign of the exponent (since 
the exponent can be positive or negative). In binary notation, the largest 
number that can be written with 11 bits is 2047 (when all 11 digits are 
1). The bias that is used is 1023, which means that if, for example, the 
exponent is 4, then the value that is stored is 4 + 1023 = 1027. Thus, the 

1. IEEE stands for the Institute of Electrical and Electronics Engineers. 

2. Precision refers to the number of significant digits of a real number that can be 
stored on a computer. For example, the number 1/3 = 0.333333 ... can be represented 
on a computer only in a chopped or rounded form with a finite number of binary dig­
its, since the amount of memory where these bits are held is finite. The more digits 
to the right-hand side of the decimal point that are stored, the more precise is the 
representation of the real number on the computer. 

3. This is somewhat of a misnomer. The precision in a double-precision number is not 
really doubled compared to a single-precision number. Rather, the "double" in dou­
ble precision refers to the fact that twice as many binary digits (64 versus 32) are 
used to represent a real number than in the case of a single-precision representation. 

Figure: Floating-point representation in double precision.
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Storing a number in computer memory: IEEE-754 standard

� The value of the mantissa is in a binary form. The value of the exponent is
entered with a bias. A bias means that a constant is added to the value of the
exponent.

� The bias is introduced in order to avoid using one of the bits for the sign of
the exponent (since the exponent can be positive or negative).

� In binary notation, the largest number that can be written with 11 bits is 2047
(when all 11 digits are 1).

� In this case, the bias 1023 is used, which means that if, for example, the
exponent is 4, then the value that is stored is 4 + 1023 = 1027.

� Smallest exponent that can be stored by the computer is −1023, and the
largest is 1024 (which will be stored as 2047).

41/61 Dr. Kundan Kumar Numerical Methods (MTH4002)



Course Details A problem and its solution Error in Numerical Solutions Number Representation Mathematical Background Numerical Problems References

Storing a number in computer memory: IEEE-754 standard

� The value of the mantissa is in a binary form. The value of the exponent is
entered with a bias. A bias means that a constant is added to the value of the
exponent.

� The bias is introduced in order to avoid using one of the bits for the sign of
the exponent (since the exponent can be positive or negative).

� In binary notation, the largest number that can be written with 11 bits is 2047
(when all 11 digits are 1).

� In this case, the bias 1023 is used, which means that if, for example, the
exponent is 4, then the value that is stored is 4 + 1023 = 1027.

� Smallest exponent that can be stored by the computer is −1023, and the
largest is 1024 (which will be stored as 2047).

41/61 Dr. Kundan Kumar Numerical Methods (MTH4002)



Course Details A problem and its solution Error in Numerical Solutions Number Representation Mathematical Background Numerical Problems References

Storing a number in computer memory: IEEE-754 standard

� The value of the mantissa is in a binary form. The value of the exponent is
entered with a bias. A bias means that a constant is added to the value of the
exponent.

� The bias is introduced in order to avoid using one of the bits for the sign of
the exponent (since the exponent can be positive or negative).

� In binary notation, the largest number that can be written with 11 bits is 2047
(when all 11 digits are 1).

� In this case, the bias 1023 is used, which means that if, for example, the
exponent is 4, then the value that is stored is 4 + 1023 = 1027.

� Smallest exponent that can be stored by the computer is −1023, and the
largest is 1024 (which will be stored as 2047).

41/61 Dr. Kundan Kumar Numerical Methods (MTH4002)



Course Details A problem and its solution Error in Numerical Solutions Number Representation Mathematical Background Numerical Problems References

Storing a number in computer memory: IEEE-754 standard

� The value of the mantissa is in a binary form. The value of the exponent is
entered with a bias. A bias means that a constant is added to the value of the
exponent.

� The bias is introduced in order to avoid using one of the bits for the sign of
the exponent (since the exponent can be positive or negative).

� In binary notation, the largest number that can be written with 11 bits is 2047
(when all 11 digits are 1).

� In this case, the bias 1023 is used, which means that if, for example, the
exponent is 4, then the value that is stored is 4 + 1023 = 1027.

� Smallest exponent that can be stored by the computer is −1023, and the
largest is 1024 (which will be stored as 2047).

41/61 Dr. Kundan Kumar Numerical Methods (MTH4002)



Course Details A problem and its solution Error in Numerical Solutions Number Representation Mathematical Background Numerical Problems References

Storing a number in computer memory: IEEE-754 standard

� However, the smallest and largest values of the exponent plus bias are reserved
for zero and infinity (Inf) or not-a-number (NaN) due to invalid mathematical
operation.

� The 11 bits for the exponent plus bias store values between −1023 and 1024.

� If the exponent plus bias and mantissa are both zero, then the number
actually stored is 0.

� If the exponent plus bias is 2047 the number stored is Inf if the mantissa is
zero, and It is NaN if the mantissa is not zero.

� In single precision, 8 bits are allocated to the value of the exponent and the
bias is 127.
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Example

Example 07: How the number 22.5 can be stored in double precision accord-
ing to the IEEE-754 standard.

Solution: First, the number is normalized:

22.5

24
= 1.40625× 24

In double precision, the exponent with the 24 bias is 4 + 1023 = 1027, which is stored in binary
form as 10000000011. The mantissa is 0.40625, which is stored in binary form as
.01101000....000. The storage of the number is illustrated below

8 Chapter 1 Introduction 

smallest exponent that can be stored by the computer is -1023, and the 

largest is 1024 (which will be stored as 2047). However, the smallest 

and largest values of the exponent plus bias are reserved for zero and 

infinity (Inf) or not-a-number (NaN) due to invalid mathematical 

operation. The 11 bits for the exponent plus bias store values between 

-1023 and 1024. If the exponent plus bias and mantissa are both zero, 

then the number actually stored is 0. If the exponent plus bias is 2047 

the number stored is Inf if the mantissa is zero, and it is NaN if the 

mantissa is not zero. In single precision, 8 bits are allocated to the value 

of the exponent and the bias is 127. 

As an example, consider storing of the number 22.5 in double preci­

sion according to the IEEE-754 standard. First, the number is normal-

ized: 
22·524 = 1.40625 x 24. In double precision, the exponent with the 

24 
bias is 4 + 1023 = 1027, which is stored in binary form as 10000000011. 
The mantissa is 0.40625, which is stored in binary form as 

.01101000 .... 000. The storage of the number is illustrated in Fig. 1-7. 

Li+-������+����������� 

Sign 

1 bit 
Exponent + bias 

11 bits 

Mantissa 

52 bits 

Figure 1-7: Storing the number 22.5 in double precision according to the IEEE-754 standard. 

Additional notes 

• The smallest positive number that can be expressed in double preci­

sion 1s: 

2-1022 ""2.2 x 10-308 

This means that there is a (small) gap between zero and the smallest 

number that can be stored on the computer. Attempts to define a 

number in this gap causes an underflow error. (In the same way, the 

closest negative number to zero is -2.2 x 10-308 
.) 

• The largest positive number that can be expressed in double preci­

sion is approximately: 

21024"" 1.8 x 10308 

Attempts to define a larger number causes overflow error. (The same 

applies to numbers smaller than -21024 .) 

The range of numbers that can be represented in double precision is 

shown in Fig. 1-8. 
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Limitations
� The smallest positive number that can be expressed in double precision is:

2−1022 ≈ 2.2× 10−308

This means that there is a (small) gap between zero and the smallest number
that can be stored on the computer. Attempts to define a number in this gap
causes an underflow error. (In the same way, the closest negative number to
zero is −2.2× 10−308).

� The largest positive number that can be expressed in double precision is
approximately:

21024 ≈ 1.8× 10308

Attempts to define a larger number causes overflow error. (The same applies
to numbers smaller than −21024.)
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Limitations
1.2 Representation of Numbers on a Computer 9 
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Figure 1-8: Range of numbers that can be represented in double precision. 
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• Since a finite number of bits is used, not every number can be accu­

rately written in binary form. In other words, only a finite number of 

exact values in decimal format can be stored in binary form. For 

example, the number 0.1 cannot be represented exactly in finite 

binary format when single precision is used. To be written in binary 

floating point representation, 0.1 is normalized: 0.1 = 1.6 x 2-4. The 

exponent -4 (with a bias) can be stored exactly, but the mantissa 0.6 
cannot be written exactly in a binary format that uses 23 bits. In 

addition, irrational numbers cannot be represented exactly in any 

format. This means that, in many cases, exact values are approxi­

mated. The errors that are introduced are small in one step, but when 

many operations are executed, the errors can grow to such an extent 

that the final answer is affected. These errors, as well as other errors, 

are discussed in the next section. 

• The interval between numbers that can be represented depends on 

their magnitude. In double precision, the smallest value of the man-

tissa that can be stored is 2-52 � 2.22 x 10-16• This is also the smallest 

possible difference in the mantissa between two numbers. The mag­

nitude of the real number that is associated with this mantissa, how­

ever, depends on the exponent. For numbers of the order of 1, the 

smallest difference between two numbers that can be represented in 

double precision is then 2.22 x 10-16 . This value is also defined as 

the machine epsilon in double precision. In MATLAB this value is 

assigned to the predefined variable eps. As shown below, when the 

name of the variable eps is typed (Command Window), the assigned 

value is displayed. 

2.220446049250313e-016 

� Since a finite number of bits is used, not every number can be accurately
written in binary form.

� For example, the number 0.1 cannot be represented exactly in finite binary
format when single precision is used. To be written in binary floating point
representation, 0.1 is normalized: 0.1 = 1.6× 2−4. The exponent −4 (with a
bias) can be stored exactly, but the mantissa 0.6 cannot be written exactly in
a binary format that uses 23 bits.
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Limitations
1.2 Representation of Numbers on a Computer 9 

� -1.8x10308 � -2.2 x 10-308 �2.2X 10-308 �1.8X 10308 

(-) I 

Overflow 

\ 0 I \ (+) 

Range of numbers that 

can be represented v 
Underflow 

Range of numbers that 

can be represented Overflow 

Figure 1-8: Range of numbers that can be represented in double precision. 
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double precision is then 2.22 x 10-16 . This value is also defined as 
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assigned to the predefined variable eps. As shown below, when the 

name of the variable eps is typed (Command Window), the assigned 

value is displayed. 

2.220446049250313e-016 

� Since a finite number of bits is used, not every number can be accurately
written in binary form.

� For example, the number 0.1 cannot be represented exactly in finite binary
format when single precision is used. To be written in binary floating point
representation, 0.1 is normalized: 0.1 = 1.6× 2−4. The exponent −4 (with a
bias) can be stored exactly, but the mantissa 0.6 cannot be written exactly in
a binary format that uses 23 bits.
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Limitations

� The interval between numbers that can be represented depends on their
magnitude. In double precision, the smallest value of the mantissa that can be
stored is 2−52 ≈ 2.22× 10−16.

� For numbers of the order of 1, the smallest difference between two numbers
that can be represented in double precision is then 2.22× 10−16. This value is
also defined as the machine epsilon in double precision.

� For single precision the smallest difference between two number is
1.1920929× 10−7.
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� For numbers of the order of 1, the smallest difference between two numbers
that can be represented in double precision is then 2.22× 10−16. This value is
also defined as the machine epsilon in double precision.
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Smaller than smallest postive number
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Mathematical Background
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Function

� A function written as y = f(x) associates a unique number y (dependent
variable) with each value of x (independent variable).

� Domain: the span of values that x can have from its minimum to its
maximum value.

� Range: the span of the corresponding values of y.

� The domain and range of the variables are also called intervals.

� When the interval includes the endpoints (the first and last values of the
variable), then it is called a closed interval, [a, b]; when the endpoints are not
included, the interval is called an open interval,(a, b). Where a and b are
endpoints of the interval of x.

� T = f(x, y, z), function can have more than one independent variable.
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Limit of a function

� If a function f(x) comes arbitrarily close to a single number L as x approaches
a number a from either the right side or the left side, then the limit of f(x) is
said to approach L as x approaches a. Symbolically, the limit is expressed by:

lim
x→a

f(x) = f(a) = L (11)

� The formal definition states that if f(x) is a function defined on an open
interval containing a and L is a real number, then for each number ε > 0,
there exists a number δ > 0 such that if 0 < |x− a| < δ then |f(x)− L| < ε.
Since δ can be chosen to be arbitrarily small, f(x) can be made to approach
the limit L as closely as desired.
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Continuity of a function

� A function f(x) is said to be continuous at x = a if the following three
conditions are satisfied:

(1) f(a) exists,
(2) limx→a f(x) exists, and
(3) limx→a f(x) = f(a)

� A function is continuous on an open interval (a, b) if it is continuous at each
point in the interval.

� A function that is continuous on the entire real axis (−∞,∞) is said to be
everywhere continuous.

� Numerically, continuity means that small variations in the independent variable
give small variations in the dependent variable.
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Intermediate value theorem
� The intermediate value theorem is a useful theorem about the behavior of a

function in a closed interval.
� Formally, it states that if f(x) is continuous on the closed interval [a, b] and
M is any number between f(a) and f(b), then there exists at least one
number c in [a, b] such that f(c) = M

� The intermediate value theorem implies that the graph of a continuous
function cannot have a vertical jump.
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Derivatives of a function
� The ordinary derivative, first derivative, or, simply, derivative of a function
y = f(x) at a point x = a in the domain of f(x) is denoted by dy

dx
, y′, df

dx
, or

f ′(a), and is defined as:

dy

dx

∣∣∣∣
x=a

= f ′(a) = lim
x→a

f(x)− f(a)

x− a

� The derivative of the function f(x) at the point x = a is the
slope of the tangent to the curve y = f(x) at that point.

� A function must be continuous before it can be
differentiable.

� A function that is continuous and differentiable over a
certain interval is said to be smooth.
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Derivatives of a function

� There are two important ways to interpret the first derivative of a function.
� As the slope of the tangent to the curve described by y = f(x) at a point which

is very useful in finding the maximum or minimum of the curve y = f(x) since
the slope (and hence the first derivative) must be zero at those points.

� The second interpretation of the derivative is as the rate of change of the
function y = f(x) with respect to x. In other words, dy

dx represents how fast y
changes as x is changed.

� Higher-order derivatives may be obtained by successive application of first
order derivative.
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Mean value theorem for derivatives
� Formally, it states that if f(x) is a continuous function on the closed interval

[a, b] and differentiable on the open interval (a, b) , then there exists a number
c within the interval, c ∈ (a, b), such that:

f ′(c) =
dy

dx

∣∣∣∣
x=c

=
f(b)− f(a)

b− a

� Simply stated, the mean value theorem for derivatives states that
within the interval there exists a point c such that the value of the
derivative of f(x) is exactly equal to the slope of the secant line
joining the endpoints (a, f(a)), and (b, f(b)).

� The mean value theorem is very useful in numerical analysis when
finding bounds for the order of magnitude of numerical error for
different methods.
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Type of Problems

� Roots of equations:
Solve f(x) = 0 for x.

� Linear algebraic equations:
Given the a’s and c’s, Solve

a11x1 + a12x2 = c1

a21x1 + a22x2 = c2

for the x’s

56/61 Dr. Kundan Kumar Numerical Methods (MTH4002)



Course Details A problem and its solution Error in Numerical Solutions Number Representation Mathematical Background Numerical Problems References

Type of Problems

� Optimization: Determine x
that gives optimum f(x).

� Curve fitting
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Type of Problems

� Integration

I =

∫ b

a

f(x)fx

find the area under the curve.

� Curve fitting
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Type of Problems

� Ordinary differential equations
Given

dy

dt
≈ ∆y

∆t
= f(t, y)

solve for y as a funtion of t.

yi+1 = yi + f(ti, yi)∆t

� Partial differential equations
Given

δ2u

δx2
+
δ2u

δy2
= f(x, y)

solve for u as a function of x
and y.
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