Introduction 0000

Linear Machine

Kernel Trick 000000000 Soft Margin Classificatio

Homework 0 References 00

Foundation of Machine Learning (CSE4032) Lecture 08: Support Vector Machine

Dr. Kundan Kumar Associate Professor Department of ECE

Faculty of Engineering (ITER) S'O'A Deemed to be University, Bhubaneswar, India-751030 © 2021 Kundan Kumar, All Rights Reserved

Introduction ●000	Linear Machine 0000000000000	Kernel Trick 000000000	Soft Margin Classification	References 00

Outline

- 1 Introduction
- **2** Linear Machine
- **3** Kernel Trick
- **4** Soft Margin Classification
- **5** Homework

Introduction 0000	Linear Machine 00000000000000	Kernel Trick 00000000	Soft Margin Classification	References 00

Support Vector Machine

Introduction 0000	Linear Machine 0000000000000	Kernel Trick 00000000	Soft Margin Classification	References 00

Introduction

- Support vector machines (SVMs) are a linear machines initially developed for two class problems, which construct a hyperplane or set of hyperplanes in a high- or infinite-dimensional space.
- SVMs are a set of supervised learning methods used for
 - classification,
 - $\hfill\square$ regression and
 - outliers detection.
- The advantages of support vector machines are:
 - Effective in high dimensional spaces. Also, effective in cases where number of dimensions is greater than the number of samples.
 - Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.
 - Versatile: different SVM kernels can be specified for the decision function.
 Common kernels are provided, but it is also possible to specify custom kernels.

Introduction 000●	Linear Machine 00000000000000	Kernel Trick 00000000	Soft Margin Classification	References 00

Introduction

- The disadvantages of support vector machines include:
 - If the number of features is much greater than the number of samples then choosing regularization to avoiding over-fitting is crucial.
 - SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation.
- In addition to performing linear classification, SVMs can efficiently perform a non-linear classification using what is called Kernel trick.
- Kernel trick implicitly maps their input into high-dimensional feature space.

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References

Linear decision boundary

Binary classification can be viewed as the task of separating classes in feature space using decision boundary:

What is a good Decision Boundary?

- Consider a two-class, linearly separable classification problem, many decision boundaries are possible.
- Are all decision boundaries equally good?
- Which of the linear separators is optimal?
- The perceptron algorithm can be used to find such a boundary.

Intro 000	oduction	Linear Machine 00●00000000000	Kernel Trick 000000000	Soft Margin Classification	References
	inear S	VM [.] Objective	ر		

• Let us training data set, \mathcal{D} , a set of n points.

$$\mathcal{D} = \{ (\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \Re^d, y_i \in \{-1, 1\} \}_{i=1}^n$$

 $\mathbf{x}_i \rightarrow d$ -dimensional real vector

• Objective: find maximum-margin hyperplane

$$\mathbf{w}^T \mathbf{x} + b = 0$$

where w is the normal vector to the hyperplane and b is the bias/intercept.

Introduction 0000	Linear Machine 0000000000000	Kernel Trick 00000000	Soft Margin Classification	References 00

Linear SVM: pictorial representation

	Linear Machine	Kernel Trick	Soft Margin Classification		References
0000	0000000000000	00000000	0000	0	00

Preliminary concepts

- Let x_n be the nearest data point to the plane $w^T x + b = 0$.
- How far is it?
- Normalize w and b such that:

$$\mathbf{w}^T \mathbf{x}_n + b| = 1$$

- Now, we need to compute the distance between x_n and the plane w^Tx + b = 0, where |w^Tx_n + b| = 1.
- The vector w is ⊥ to the plane in the X space:
- Take x_1 and x_2 on the plane $w^T x_1 + b = 0$ and $w^T x_2 + b = 0$

$$\Rightarrow \mathbf{w}^T(\mathbf{x}_1 - \mathbf{x}_2) = 0$$

Introduction 0000	Linear Machine 0000000000000	Kernel Trick 000000000	Soft Margin Classification	References 00

Preliminary concepts

• The distance between x_n and the plane:

Xn

ŵ

 $\hfill\square$ Take any point x on the plane

 $\hfill\square$ Projection of $\mathbf{x}_n - \mathbf{x}$ on $\hat{\mathbf{w}}$

 $\hat{w} = \frac{w}{||w||}$

$$\Rightarrow \quad \mathsf{distance} = |\hat{\mathbf{w}}^T(\mathbf{x}_n - \mathbf{x})|$$

distance =
$$\frac{1}{||\mathbf{w}||} |\mathbf{w}^T \mathbf{x}_n - \mathbf{w}^T \mathbf{x}| = \frac{1}{||\mathbf{w}||} |\mathbf{w}^T \mathbf{x}_n + b - \mathbf{w}^T \mathbf{x} - b| = \frac{1}{||\mathbf{w}||}$$

Introduction 0000	Linear Machine 0000000000000	Kernel Trick 00000000	Soft Margin Classification	References 00

Problem formulation

Two hyperplanes

$$w^{T}x + b = 1$$
$$w^{T}x + b = -1$$

So the distance between the hyperplane is

$$\frac{b+1}{||\mathbf{w}||} - \frac{b-1}{||\mathbf{w}||} = \frac{2}{||\mathbf{w}||}$$

(need to be maximize)

• Therefore, ||w|| need to be minimize.

Introduction 0000	Linear Machine 0000000000000	Kernel Trick 00000000	Soft Margin Classification	References 00

Problem formulation

- We need to minimize ||w|| to maximize the margin.
- We also have to restrict data points from falling into the margin, so add the following constraints:
 - □ $\mathbf{w}^T \mathbf{x}_i + b \ge 1$ for x_i of the 1st class. □ $\mathbf{w}^T \mathbf{x}_i + b \le -1$ for x_i of the 2nd class.
- This can be written as

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$$
 for $i = 1, 2, ..., n$

Combining the above two

 $\underset{\mathbf{w},b}{\mathsf{Minimize}} \quad ||\mathbf{w}||$

subject to $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1$ for $i = 1, 2, \dots, n$

Introduction 0000	Linear Machine 00000000000000	Kernel Trick 000000000	Soft Margin Classification	References 00

Problem formulation

- Problem is difficult to solve because it depends on ||w||, the norm of w, which involves a square root.
- Substitute ||w|| with $\frac{1}{2}||w||^2$ (just for mathematical convenience)
- Then problem is formulated as

$$\begin{array}{ll} \underset{\mathbf{w},b}{\text{Minimize}} & \frac{1}{2}||\mathbf{w}||^2\\ \text{subject to} & y_i(\mathbf{w}^T\mathbf{x}_i+b) \geq 1 \quad \text{ for } \quad i=1,2,\ldots,n \end{array}$$

where $\mathbf{w}\in\Re^d$ and $b\in\Re$

- The above problem is constraint optimization problem.
- Read about Lagrangian and inequality constraint KKT

IntroductionLinear MachineKernel TrickSoft Margin ClassificationHomeworkReferences000000000000000000000000000000000

Problem solution: Lagrange formulation

- There is no direct solution of the formulated constraint optimization problem.
- To obtain the dual, take positive Lagrange multiplier α_i multiplied by each constraint and subtract from the objective function.

Minimize
$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum_{i=1}^n \alpha_i(y_i(\mathbf{w}^T\mathbf{x}_i + b) - 1)$$

w.r.t. \mathbf{w} and b and maximize w.r.t. each $\alpha_i \geq 0$

• We can find the constraint as

$$\nabla_{\mathbf{w}} \mathcal{L} = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0$$
$$\frac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^{n} \alpha_i y_i = 0$$

Linear Machine	Kernel Trick	Soft Margin Classification	References
00000000000000			

Problem solution: Lagrange formulation

We obtained

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
 and $\sum_{i=1}^{n} \alpha_i y_i = 0$

Substitute in Lagrangian optimization problem,

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} - \sum_{i=1}^n \alpha_i (y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1)$$

we get

$$\mathcal{L}(\alpha) = \sum_{n=1}^{n} \alpha_n - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j$$

Maximize w.r.t. to α subject to $\alpha_i \ge 0$ for $i = 1, \ldots, n$ and $\sum_{i=1}^n \alpha_i y_i = 0$

	Linear Machine	Kernel Trick	Soft Margin Classification	References
0000	0000000000000000	00000000	0000	00

The solution - quadratic programming

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{T} \begin{bmatrix} y_{1}y_{1}x_{1}^{T}x_{1} & y_{1}y_{2}x_{1}^{T}x_{2} & \cdots & y_{1}y_{n}x_{1}^{T}x_{n} \\ y_{2}y_{1}x_{2}^{T}x_{1} & y_{2}y_{2}x_{2}^{T}x_{2} & \cdots & y_{2}y_{n}x_{2}^{T}x_{n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n}y_{1}x_{n}^{T}x_{1} & y_{n}y_{2}x_{n}^{T}x_{2} & \cdots & y_{n}y_{n}x_{n}^{T}x_{n} \end{bmatrix} \alpha + (-1^{T}) \alpha$$

subject to $\mathbf{y}^T \boldsymbol{\alpha} = 0$ and $0 \leqslant \boldsymbol{\alpha} \leqslant \infty$

Introduction 0000	Linear Machine 000000000000000	Kernel Trick 000000000	Soft Margin Classification	References 00

QP hand us lpha

• Solution: $\alpha = \alpha_1, \ldots, \alpha_n$

 $\Rightarrow \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$

• KKT condition: For $i = 1, \ldots, n$

 $\alpha_i(y_i(\mathbf{w}^T\mathbf{x}_i+b)-1)=0$

 For non-zero value of α (α_n > 0), x_n are support vectors.

Introduction 0000	Linear Machine 000000000000000	Kernel Trick 00000000	Soft Margin Classification	References 00

Support vectors

Closest x_i's to the plane achieve the margin

$$\Rightarrow y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$$

• We have the weight vector

$$\mathbf{w} = \sum_{x_i \text{ is SV}} \alpha_i y_i \mathbf{x}_i$$

Solve for b: using any Support vector (SV):

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) = 1$$

Introduction 0000	Linear Machine 0000000000000	Kernel Trick 00000000	Soft Margin Classification	References 00

Non-separable features

Introduction 0000	Linear Machine 00000000000000	Kernel Trick ●00000000	Soft Margin Classification	References 00

Kernel trick: \overline{z} instead of \overline{x}

Dual problem:

$$\mathcal{L}(\alpha) = \sum_{n=1}^{n} \alpha_n - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{z}_i^T \mathbf{z}_j$$

Maximize w.r.t. to α subject to $\alpha_i \geq 0$ for $i = 1, \ldots, n$ and $\sum_{i=1}^n \alpha_i y_i = 0$

 Introduction
 Linear Machine
 Kernel Trick oooo
 Soft Margin Classification
 Homework
 References

 0000
 00000000000
 00000000
 00000000
 00000000
 00000000

Kernel Trick: What do we need from the \mathcal{Z} space?

$$\mathcal{L}(\alpha) = \sum_{n=1}^{n} \alpha_n - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{z}_i^T \mathbf{z}_j$$

Constraints: $\alpha \geq 0$ for $i = 1, \ldots, n$ and $\sum_{i=1}^{n} \alpha_i y_i = 0$

$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{z} + b)$$
 need $\mathbf{z}_i^T \mathbf{z}$

where

$$\mathbf{w} = \sum_{\mathbf{z}_i \text{ is SV}} \alpha_i y_i z_i$$

and b:

$$y_j(\mathbf{w}^T \mathbf{z}_j + b) = 1$$
 need $\mathbf{z}_i^T \mathbf{z}_j$

Linear Machine	Kernel Trick	Soft Margin Classification	References
	00000000		

Kernel Trick: generalized inner product

- Given two points x and $x' \in \mathcal{X}$, we need $z^T z'$.
- Let $z^T z' = K(x, x')$ (the kernel: inner product of x and x')
- Example: $\mathbf{x} = (x_1, x_2)^T \rightarrow 2$ nd-order Φ

$$z = \Phi(x) = (1, x_1, x_2, x_1^2, x_2^2, x_1x_2)$$

 $K(\mathbf{x}, \mathbf{x}') = \mathbf{z}^T \mathbf{z}' = 1 + x_1 x_1' + x_2 x_2' + x_1^2 x_1'^2 + x_2^2 x_2'^2 + x_1 x_1' x_2 x_2'$

- Can we compute $K(\mathbf{x}, \mathbf{x}')$ without transforming \mathbf{x} and \mathbf{x}' ?
- Consider:

$$K(\mathbf{x}, \mathbf{x}') = (1 + \mathbf{x}^T \mathbf{x}')^2 = (1 + x_1 x'_1 + x_2 x'_2)^2$$

= $1 + x_1^2 x'_1{}^2 + x_2^2 x'_2{}^2 + 2x_1 x'_1 + 2x_2 x'_2 + 2x_1 x'_1 x_2 x'_2$

This is the inner production of

$$(1, x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2)$$
$$(1, x'_1{}^2, x'_2{}^2, \sqrt{2}x'_1, \sqrt{2}x'_2, \sqrt{2}x'_1x'_2)$$

Introduction 0000	Linear Machine 00000000000000	Kernel Trick 0000●0000	Soft Margin Classification	References 00

771

Non-linear Kernels

- Following are some basic non-linear kernels:
 - Linear:
 - Delynomial:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$
$$K(\mathbf{x}_i, \mathbf{x}_j) = (\gamma \mathbf{x}_i^T \mathbf{x}_j + r)^d, \gamma > 0$$

Radial basis function:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2\right), \gamma > 0$$

□ Sigmoid:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh\left(\gamma \mathbf{x}_i^T \mathbf{x}_j + r\right), \gamma > 0$$

where, $\gamma\text{, }r\text{, and }d$ are kernel parameters.

 These kernels were used in various application where radial basis function (RBF) kernel is widely adopted as a non-linear kernel due to its capability of mapping the feature vectors from input feature space to infinite dimensional space to handle highly non-linear feature distribution.

Kernel formulation of SVM

- Remember quadratic programming?
- The only difference in quadratic coefficients as:

$$\min_{\alpha} \quad \frac{1}{2} \alpha^{T} \begin{bmatrix} y_{1}y_{1}z_{1}^{T}z_{1} & y_{1}y_{2}z_{1}^{T}z_{2} & \cdots & y_{1}y_{n}z_{1}^{T}z_{n} \\ y_{2}y_{1}z_{2}^{T}z_{1} & y_{2}y_{2}z_{2}^{T}z_{2} & \cdots & y_{2}y_{n}z_{2}^{T}z_{n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{n}y_{1}z_{n}^{T}z_{1} & y_{n}y_{2}z_{n}^{T}z_{2} & \cdots & y_{n}y_{n}z_{n}^{T}z_{n} \end{bmatrix} \alpha + (-1^{T}) \alpha$$

subject to $y^T \alpha = 0$ and $0 \leq \alpha \leq \infty$

Introduction 0000	Linear Machine 00000000000000	Kernel Trick 000000●00	Soft Margin Classification	References 00
The fina	l hypothesis			

• Express $g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T\mathbf{z} + b)$ in terms of $K(_,_)$

$$\mathbf{w} = \sum_{z_n \text{ in SV}} \alpha_n y_n \mathbf{z}_n \quad \Rightarrow \quad g(\mathbf{x}) = \operatorname{sign}\left(\sum_{\alpha_n > 0} \alpha_n y_n K(\mathbf{x}_n, \mathbf{x}) + b\right)$$

where

$$b = y_j - \sum_{\alpha_i > 0} \alpha_i y_i K(x_i, x_j)$$

for any support vector ($\alpha_i > 0$)

Y

Introduction Linear Machine Kernel Trick Soft Margin Classification Homework References

Problem to be solved: Linear (trivial problem)

Suppose we are given the following positively labeled data points in R²:

$$\left\{ \left(\begin{array}{c} 3\\1 \end{array}\right), \left(\begin{array}{c} 3\\-1 \end{array}\right), \left(\begin{array}{c} 6\\1 \end{array}\right), \left(\begin{array}{c} 6\\-1 \end{array}\right) \right\}$$

- and the following negatively labeled data points in \Re^2

$$\left\{ \left(\begin{array}{c}1\\0\end{array}\right), \left(\begin{array}{c}0\\1\end{array}\right), \left(\begin{array}{c}0\\-1\end{array}\right), \left(\begin{array}{c}-1\\0\end{array}\right) \right\}$$

Introduction 0000	Linear Machine 00000000000000	Kernel Trick 00000000●	Soft Margin Classification	References 00

Solution

- Since the data is linear separable, we can use a linear SVM.
- By inspection, it should be obvious that there are three support vectors.

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
0000	00000000000000	000000000	●000	00

Soft Margin Classification

- In basic SVM, the optimization problem is formulated for margin maximization when the feature vectors are linearly separable.
- However, a greater margin can be achieved by allowing classifier for some misclassification error during training itself.
- After allowing the misclassification of some features, the inequality constraint in basic SVM is replaced with y_i(w^Tx_i + b) ≥ 1 − ξ_i, where ξ_i ≥ 0 are slack variables.

Figure: $\ensuremath{\mathcal{X}}\xspace$ with support vector, penalized misclassification, and margin error

	Linear Machine	Kernel Trick	Soft Margin Classification		References
0000	0000000000000	00000000	0000	0	00

The new optimization problem: C-SVM

- Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called soft.
- Slack variables account for the misclassification and margin errors.
- The primal optimization problem with penalized misclassification and margin error becomes.

$$\begin{array}{ll} \underset{\mathbf{w},b}{\text{minimize}} & \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i \\ \text{subject to}: & y_i(\mathbf{w}^{\mathrm{T}}\mathbf{x}_i + b) \ge 1 - \xi_i, \text{ and} \\ & \xi_i \ge 0, \ i = 1, 2, \dots, n, \end{array} \tag{1}$$

 where C is a regularization parameter which sets the trade-off between margin maximization and minimizing the amount of slack (misclassifications and margin error).

Introduction 0000	Linear Machine 00000000000000	Kernel Trick 00000000	Soft Margin Classification	References 00

Lagrange formulation

 Using Lagrange multipliers, the dual problem is expressed in terms of Lagrangian coefficients as

7

$$\mathcal{L}(\mathbf{w}, b, \xi, \alpha, \beta) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i (y_i (\mathbf{w}^T \mathbf{x}_i + b) - 1 + \xi_i) - \sum_{i=1}^n \beta_i \xi_i$$

Minimize w.r.t. w, b, and ξ and maximize w.r.t. each $\alpha_n \geq 0$ and $\beta_n \geq 0$

$$\nabla_{\mathbf{w}}L = \mathbf{w} - \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i = 0$$
$$\frac{\partial L}{\partial b} = -\sum_{i=1}^{n} \alpha_i y_i = 0$$
$$\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \beta_i = 0$$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	References
0000	00000000000000	00000000	000●	00
and the	solution is			

Maximize
$$\mathcal{L}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x}_i^T \mathbf{x}_j$$
 w.r.t. to α

subject to
$$0 \leq \alpha_i \leq C$$
 for $n = 1, ..., N$ and $\sum_{i=1}^n \alpha_i y_i = 0$

$$\Rightarrow \mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^{n} \xi_i$$

Introduction	Linear Machine	Kernel Trick	Soft Margin Classification	Homework	References
0000	00000000000000	000000000		•	00
Homewo	rk				

Prove that Radial basis function kernel mapped the lower dimensional features to infinite dimensional space?

Introduction 0000	Linear Machine 00000000000000	Kernel Trick 00000000	Soft Margin Classification	References ●0

References

- The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, Hastie, Tibshirani, and Friedman, Springer.
- In Introduction to Statistical Learning with Application in R, Second Edition, James, Witten, Hastie, and Tibshirani, Springer.

Introduction 0000	Linear Machine 00000000000000	Kernel Trick 000000000	Soft Margin Classification	Homework O	References ○●
			2		
	J	han	k you!		