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Linear Methods for Classification

There are two big branches of methods for classification.

� Generative modeling and

� Discriminative modeling.

3/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Introduction

� Classification is supervised learning for which the true class labels for the data
points are given in the training data.

� Setup for supervised learning
� Training data: (x1, g1) , (x2, g2) , · · · , (xN , gN )
� The feature variables X = (X1, X2, · · · , Xp), where each variable Xj is

quantitative.
� The response variable G is categorical. G ∈ {1, 2, . . . ,K}
� Form a predictor G(x) to predict G based on X.

� G(x) divides the input space (feature space) into a collection of regions, each
labeled by one class.

4/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Introduction to classification

� See the example partition of the feature space by G(x) in the following plots.
For each plot, the space is divided into three pieces, each assigned with a
particular class. 4.2 Linear Regression of an Indicator Matrix 103
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FIGURE 4.1. The left plot shows some data from three classes, with linear
decision boundaries found by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by finding linear boundaries
in the five-dimensional space X1, X2, X1X2, X

2
1 , X

2
2 . Linear inequalities in this

space are quadratic inequalities in the original space.

mation h(X) where h : IRp 7→ IRq with q > p, and will be explored in later
chapters.

4.2 Linear Regression of an Indicator Matrix

Here each of the response categories are coded via an indicator variable.
Thus if G has K classes, there will be K such indicators Yk, k = 1, . . . ,K,
with Yk = 1 if G = k else 0. These are collected together in a vector
Y = (Y1, . . . , YK), and the N training instances of these form an N × K
indicator response matrix Y. Y is a matrix of 0’s and 1’s, with each row
having a single 1. We fit a linear regression model to each of the columns
of Y simultaneously, and the fit is given by

Ŷ = X(XTX)−1XTY. (4.3)

Chapter 3 has more details on linear regression. Note that we have a coeffi-
cient vector for each response column yk, and hence a (p+1)×K coefficient

matrix B̂ = (XTX)−1XTY. Here X is the model matrix with p+1 columns
corresponding to the p inputs, and a leading column of 1’s for the intercept.
A new observation with input x is classified as follows:

• compute the fitted output f̂(x)T = (1, xT )B̂, a K vector;

• identify the largest component and classify accordingly:

Ĝ(x) = argmaxk∈G f̂k(x). (4.4)

5/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Classification Error Rate

� The classification error rate is the number of observations that are
misclassified over the sample size.

1

N

N∑
i=1

I
(
Ŷi 6= yi

)

where I
(
Ŷi 6= yi

)
= 1 if Ŷi 6= yi and 0 otherwise.

6/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Bayes Classification Rule

� Suppose
� the marginal distribution of G is specified by the probability mass function

(pmf) pG(g), g = 1, 2, . . . ,K.
� The conditional distribution of X given G = g is fX|G(x | G = g).

� The training data {(xi, gi)}, i = 1, 2, · · · , N , are independent samples from
the joint distribution of X and G,

fX,G(x, g) = pG(g)fX|G(x | G = g)

7/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Bayes Classification Rule

� Assume the loss of predicting G at G(X) = Ĝ is L(Ĝ, G).

� Goal of classification: to minimize the expected loss

EX,GL(G(X), G) = EX
(
EG|XL(G(X), G)

)
� To minimize the left hand side, it suffices to minimize EG|XL(G(X), G) for

each X. Hence the optimal predictor:

Ĝ(x) = arg min
g
EG|X=xL(g,G)

� The above decision rule is called the Bayes classification rule.

8/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Bayes Classification Rule
� For 0− 1 loss, i.e.,

L (g, g′) =

{
1 g 6= g′

0 g = g′

EG|X=xL(g,G) = 1− Pr(G = g | X = x)

� The Bayes rule becomes the rule of maximum posterior probability:

Ĝ(x) = arg min
g
EG|X=xL(g,G)

= arg max
g

Pr(G = g | X = x)

Many classification algorithms attempt to estimate Pr(G = g | X = x), then
apply the Bayes rule.

9/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Linear Methods for Classification
� Decision boundaries are linear.
� Two class problem:

� The decision boundary between the two classes is a hyperplane in the feature
space.

� A hyperplane in the p dimensional input space is the set:x : αo +

p∑
j=1

αjxj = 0


� The two regions separated by a hyperplane:x : αo +

p∑
j=1

αjxj > 0

 and

x : αo +

p∑
j=1

αjxj < 0


10/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Linear Methods for Classification

� More than two classes: The decision boundary between any pair of classes k
and l is a hyperplane (shown in previous figure).

� How do you choose the hyperplane?

� Example methods for deciding the hyperplane:
� Linear discriminant analysis.
� Logistic regression.

� Linear decision boundaries are not necessarily constrained. We can expand the
feature space by adding in extra variables formed by functions of the original
variables. Linear decision boundaries in the expanded feature space may be
nonlinear in the original feature space.

11/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Linear Discriminant Analysis

12/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Introduction

� Let the feature vector be X and the class labels be Y .

� The Bayes rule says that if you have the joint distribution of X and Y , and if
X is given, under 0− 1 loss, the optimal decision on Y is to choose a class
with maximum posterior probability given X.

� Discriminant analysis belongs to the branch of classification methods called
generative modeling, where we try to estimate the within class density of X
given the class label.

� Combined with the prior probability (unconditioned probability) of classes, the
posterior probability of Y can be obtained by the Bayes formula.

13/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Bayes Rule

� Assume the prior probability or the marginal probability mass function (pmf)
for class k is denoted as πk,

∑K
k=1 πk = 1.

� πk is usually estimated simply by empirical frequencies of the training set:

π̂k =
# of Samples in class k

Total # of samples

� You have the training data set and you count what percentage of data come
from a certain class. Then we need the class-conditional density of X.
Remember this is the density of X conditioned on the class k, or class G = k
denoted by fk(x).

14/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Bayes Rule
� According to the Bayes rule, what we need is to compute the posterior

probability:

Pr(G = k | X = x) =
fk(x)πk∑K
l=1 fl(x)πl

This is a conditional probability of class G given X.
� By MAP (maximum a posteriori, i.e., the Bayes rule for 0− 1 loss):

Ĝ(x) = arg max
k

Pr(G = k | X = x)

= arg max
k
fk(x)πk

� Notice that the denominator is identical no matter what class k you are using.
Therefore, for maximization, it does not make a difference in the choice of k.
The MAP rule is essentially trying to maximize πk times fk(x).

15/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Class Density Estimation

� Depending on which algorithms you use, you end up with different ways of
density estimation within every class.

� In Linear Discriminant Analysis (LDA) we assume that every density within
each class is a Gaussian distribution.

� Linear and Quadratic Discriminant Analysis: Gaussian densities.
� In LDA, we assume those Gaussian distributions for different classes share the

same covariance structure.
� In Quadratic Discriminant Analysis (QDA) we don’t have such a constraint. You

will see the difference later.

� General Nonparametric Density Estimates:
� You can also use general nonparametric density estimates, for instance kernel

estimates and histograms.

16/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Class Density Estimation
� Naive Bayes:

� Assume each of the class densities are products of marginal densities, that is, all
the variables are independent.

� There is a well-known algorithm called the Naive Bayes algorithm. Here the
basic assumption is that all the variables are independent given the class label.
Therefore, to estimate the class density, you can separately estimate the
density for every dimension and then multiply them to get the joint density.
This makes the computation much simpler.

� X may be discrete, not continuous. Instead of talking about density, we will
use the probability mass function (pmf).

� In this case, we would compute a probability mass function for every
dimension and then multiply them to get the joint probability mass function.

17/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Linear Discriminant Analysis
� Under LDA, we assume that the density for X, given every class k, is following

a Gaussian distribution.
� Here is the density formula for a multivariate Gaussian distribution:

fk(x) =
1

(2π)p/2 |Σk|1/2
e−

1
2

(x−µk)T Σ−1
k (x−µk)

p is the dimension and Σk is the covariance matrix. In this case, we are doing
matrix multiplication. The vector x and the mean vector µk are both column
vectors.

� For Linear discriminant analysis (LDA):

Σk = Σ, ∀k

18/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Linear Discriminant Analysis

� In LDA, as we mentioned, you simply assume for different k that the
covariance matrix is identical.

� By making this assumption, the classifier becomes linear.

� The only difference from quadratic discriminant analysis is that we do not
assume that the covariance matrix is identical for different classes.

� For QDA, the decision boundary is determined by a quadratic function.

� Since the covariance matrix determines the shape of the Gaussian density, in
LDA, the Gaussian densities for different classes have the same shape, but are
shifted versions of each other (different mean vectors).

19/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Linear Discriminant Analysis

� Example densities for the LDA model are shown below.

20/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Optimal Classifier

� For the moment, we will assume that we already have the covariance matrix
for every class. And we will talk about how to estimate this in a moment.

� Let’s look at what the optimal classification would be based on the Bayes rule.

� Bayes rule says that we should pick a class that has the maximum posterior
probability given the feature vector x. If we are using the generative modeling
approach this is equivalent to maximizing the product of the prior and the
within class density.

� Since the log function is an increasing function, the maximization is equivalent
because whatever gives you the maximum should also give you a maximum
under a log function. Next, we plug in the density of the Gaussian distribution
assuming common covariance and then multiplying the prior probabilities.

21/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Optimal Classifier

Ĝ(x) = arg max
k

Pr(G = k | X = x)

= arg max
k

fk(x)πk

= arg max
k

ln (fk(x)πk)

= arg max
k

[
− ln

(
(2π)p/2|Σ|1/2

)
− 1

2
(x− µk)T Σ−1 (x− µk) + ln (πk)

]
= arg max

k

[
−1

2
(x− µk)T Σ−1 (x− µk) + ln (πk)

]
NOTE:

−1

2
(x− µk)T Σ−1 (x− µk) = xTΣ−1µk −

1

2
µTk Σ−1µk −

1

2
xTΣ−1x

22/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Optimal Classifier

� To sum up, after simplification we obtain this formula:

Ĝ(x) = arg max
k

[
xTΣ−1µk −

1

2
µTkΣ−1µk + ln (πk)

]
� This is the final classifier. Given any x, you simply plug into this formula and

see which k maximizes this.

� Usually the number of classes is pretty small, and very often only two classes.
Hence, an exhaustive search over the classes is effective.

� LDA gives you a linear boundary because the quadratic term is dropped.

23/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)



Introduction to Classification Bayes Classifier Linear Methods for Classification Linear Discriminant Analysis Logistic Regression References

Optimal Classifier
� To sum up

Ĝ(x) = arg max
k

[
xTΣ−1µk −

1

2
µTkΣ−1µk + ln (πk)

]
� Define the linear discriminant function

δk(x) = xTΣ−1µk − 1
2µ

T
k Σ−1µk + ln (πk)

Ĝ(x) = arg maxk δk(x)

� Then, the decision boundary between class k and l is:

{x : δk(x) = δl(x)}
� Or equivalently the following holds

ln
πk
πl
− 1

2
(µk + µl)

T Σ−1 (µk − µl) + xTΣ−1 (µk − µl) = 0

24/49 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Binary Classification
� In binary classification in particular, for instance if we let (k = 1, l = 2), then

we would define constant a0, given below, where π1 and π2 are prior
probabilities for the two classes and µ1 and µ2 are mean vectors.
� Binary classification (k = 1, l = 2) :
� Define a0 = ln π1

π2
− 1

2 (µ1 + µ2)T Σ−1 (µ1 − µ2)

� Define (a1, a2, . . . , ap)
T = Σ−1 (µ1 − µ2)

� Classify to class 1 if a0 +
∑p

j=1 ajxj > 0; to class 2 otherwise.
� An example

� π1 = π2 = 0.5
� µ1 = (0, 0)T , µ2 = (2,−2)T

� Σ =

(
1.0 0.0
0.0 0.5625

)
� Decision boundary: 5.56− 2.00x1 + 3.56x2 = 0.0
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Binary Classification
� We have two classes and we know the within class density.
� The marginal density is simply the weighted sum of the within class densities,

where the weights are the prior probabilities.
� Because we have equal weights and because the covariance matrix of two

classes are identical, we get these symmetric lines in the contour plot.
� The black diagonal line is the decision boundary for the two classes.
� Basically, if you are given an x above the line, then we would classify this x

into the first-class. If it is below the line, we would classify it into the second
class.

� Here, we have the prior probabilities for the classes and we also had the within
class densities given to us. Of course, in practice you don’t have this. In
practice, what we have is only a set of training data.

� The question is how do we find the πk’s and the fk(x) ?
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Estimating the Gaussian Distributions
� Here is the formula for estimating the π′k s and the parameters in the Gaussian

distributions.
� The formula below is actually the maximum likelihood estimator:

π̂k = Nk/N

where Nk is the number of samples in kth class and N is the total number of
points in the training data.

� As we mentioned, to get the prior probabilities for class k, you simply count
the frequency of data points in class k.

� Then, the mean vector for every class is also simple. You take all of the data
points in a given class and compute the average, the sample mean:

µ̂k =
1

Nk

∑
gi=k

x(i)
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Estimating the Gaussian Distributions

� Next, the covariance matrix formula looks slightly complicated. The reason is
because we have to get a common covariance matrix for all of the classes.

� First you divide the data points in two given classes according to the given
labels.

� If we were looking at class k, for every point, we subtract the corresponding
mean which we computed earlier. Then multiply its transpose.

� Remember x is a column vector, therefore if we have a column vector
multiplied by a row vector, we get a square matrix, which is what we need.

Σ̂ =
1

(N −K)

K∑
k=1

∑
gi=k

(
x(i) − µ̂k

) (
x(i) − µ̂k

)T
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Estimating the Gaussian Distributions

� First, we do the summation within every class k, then we have the sum over
all of the classes.

� Next, we normalize by the scalar quantity, N −K. When we fit a maximum
likelihood estimator it should be divided by N , but if it is divided by N −K,
we get an unbiased estimator.

� Remember, K is the number of classes. So, when N is large, the difference
between N and N −K is pretty small.

� Note that x(i) denotes the ith sample vector.

� In summary, if you want to use LDA to obtain a classification rule, the first
step would involve estimating the parameters using the formulas above. Once
you have these, then go back and find the linear discriminant function and
choose a class according to the discriminant functions.
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Logistic Regression
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Logistic Regression
� Logistic regression for classification is a discriminative modeling approach,

where we estimate the posterior probabilities of classes given X directly
without assuming the marginal distribution on X.

� It preserves linear classification boundaries.
� A review of the Bayes rule shows that when we use 0− 1 loss, we pick the

class k that has the maximum posterior probability:

Ĝ(x) = arg max
k

Pr(G = k | X = x)

� The decision boundary between classes k and l is determined by the equation:

Pr(G = k | X = x) = Pr(G = l | X = x)

that is the x’s at which the two posterior probabilities of k and l are equal.
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Logistic Regression

� If we divide both sides by Pr(G = l | X = x) and take the log of this ratio,
the above equation is equivalent to:

log
Pr(G = k | X = x)

Pr(G = l | X = x)
= 0

� Since we want to enforce a linear classification boundary, we assume the
function above is linear (below):

log
Pr(G = k | X = x)

Pr(G = l | X = x)
= a

(k,l)
0 +

p∑
j=1

a
(k,l)
j xj

� This is the basic assumption of logistic regression (simple indeed).
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Logistic Regression

� We use the superscript (k, l) on the coefficients of the linear function because
for every pair of k and l, the decision boundary would be different, determined
by the different coefficients.

� For logistic regression, there are restrictive relations between a(k,l) for different
pairs of (k, l). We don’t really need to specify this equation for every pair of k
and l.

� Instead, we only need to specify it for K − 1 such pairs.
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Logistic Regression
� Assumptions

� Let’s look at our assumptions. If we take class K as the base class, the assumed
equations are:

log
Pr(G = 1 | X = x)

Pr(G = K | X = x)
= β10 + βT1 x

log
Pr(G = 2 | X = x)

Pr(G = K | X = x)
= β20 + βT2 x

...

log
Pr(G = K − 1 | X = x)

Pr(G = K | X = x)
= β(K−1)0 + βTK−1x

� This indicates that we don’t have to specify the decision boundary for every pair
of classes.
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Logistic Regression
� We only need to specify the decision boundary between class j and the base

class K. (You can choose any class as the base class - it doesn’t really
matter.)

� Once we have specified the parameters for these K − 1 log ratios, then for any
pair of classes (k, l), we can derive the log ratios without introducing new
parameters:

log
Pr(G = k | X = x)

Pr(G = l | X = x)
= βk0 + βl0 + (βk − βl)T x

� Number of parameters: (K − 1)(p+ 1)
� For convenience, we will denote the entire parameter set by θ and arrange

them in this way:

θ =
{
β10, β

T
1 , β20, β

T
2 , . . . , , β(K−1)0, β

T
K−1

}
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Logistic Regression

� The log ratios of posterior probabilities are called log-odds or logit
transformations.

� Under these assumptions, the posterior probabilities are given by the following
two equations:

Pr(G = k | X = x) =
exp

(
βk0 + βTk x

)
1 +

∑K−1
l=1 exp (βl0 + βTl x)

for k = 1, . . . , K − 1

Pr(G = K | X = x) =
1

1 +
∑K−1

l=1 exp (βl0 + βTl x)

� For Pr(G = k | X = x) given above, obviously
� These must sum up to 1:

∑K
k=1 Pr(G = k | X = x) = 1

� A simple calculation shows that the assumptions are satisfied.
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Comparison with Linear Regression on Indicators

� Similarities:
� Both attempt to estimate Pr(G = k | X = x).
� Both have linear classification boundaries.
� Posterior probabilities sum to 1 across classes.

� Difference:
� Linear regression on indicator matrix: approximate Pr(G = k | X = x) by a

linear function of x. Pr(G = k | X = x) is not guaranteed to fall between 0 and
1.

� Logistic regression: Pr(G = k | X = x) is a nonlinear function of x. It is
guaranteed to range from 0 to 1 .
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Fitting Logistic Regression Models
� How do we estimate the parameters? How do we fit a logistic regression

model?
� We need a certain optimization criterion for choosing the parameters.
� Optimization Criterion:

� What we want to do is to find parameters that maximize the conditional
likelihood of class labels G given X using the training data.

� We are not interested in the distribution of X, instead our focus is on the
conditional probabilities of the class labels given X.

� Given point xi, the posterior probability for the class to be k is denoted by:

pk (xi; θ) = Pr (G = k | X = xi; θ)

� Given the first input x1, the posterior probability of its class, denoted as g1, is
computed by:

Pr (G = g1 | X = x1) .
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Fitting Logistic Regression Models
� Since samples in the training data set are assumed independent, the posterior

probability for the N sample points each having class gi, i = 1, 2, · · · , N ,
given their inputs x1, x2, · · · , xN is:

N∏
i=1

Pr (G = gi | X = xi)

� In another word, the joint conditional likelihood is the product of the
conditional probabilities of the classes given every data point.

� The conditional log-likelihood of the class labels in the training data set
becomes a summation:

`(θ) =
N∑
i=1

log Pr (G = gi | X = xi) =
N∑
i=1

log pgi (xi; θ)
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Binary Classification

� Let’s look at binary classification first.

� In fact, when we go to more than two classes the formulas become much more
complicated, although they are derived similarly. We will begin by looking at
this simpler case.

� For binary classification, if gi = class 1, denote yi = 1; if gi = class 2, denote
yi = 0. All we are doing here is changing the labels to 1’s and 0’s so that the
notation will be simpler.
� Let p1(x; θ) = p(x; θ)
� Then p2(x; θ) = 1− p1(x; θ) = 1− p(x; θ)

because the posterior probabilities of the two classes have to sum up to 1.
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Binary Classification
� Since K = 2 we only have one linear equation and one decision boundary

between two classes, the parameters θ = β10, β1, (remember, β1 is a vector).
And, we denote β = (β10, β1)T which is a column vector.

� Now, let’s try to simplify the equation a little bit.
� If yi = 1, i.e., gi = 1

log pgi(x;β) = log p1(x;β)

= 1 · log p(x;β)

= yi log p(x;β)

� If yi = 0, i.e., gi = 2

log pgi(x;β) = log p2(x;β)

= 1 · log(1− p(x;β))

= (1− yi) log(1− p(x;β))
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Binary Classification

� Since either yi = 0 or 1− yi = 0, we can add the two (at any time, only one
of the two is nonzero) and have:

log pgi(x; β) = yi log p(x; β) + (1− yi) log(1− p(x; β))

� The reason for doing this is that when we later derive the logistic regression
we do not want to work with different cases. It would be tedious in notation if
we have to distinguish different cases each time.

� This unified equation is always correct for whatever yi you use.
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Binary Classification
� Next, we will plug what we just derived into the log-likelihood, which is simply

a summation over all the points:

`(β) =
N∑
i=1

log pgi (xi; β)

=
N∑
i=1

[yi log p (xi; β) + (1− yi) log (1− p (xi; β))]

� There are p+ 1 parameters in β = (β10, β1)T .
� Assume a column vector form for β :

β = [β10 β11 β12 . . . β1,p]
T
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Binary Classification
� Here we add the constant term 1 to x to accommodate the intercept and keep

this in matrix form.
x = [1 x,1 x,2 , . . . , x,p]

T

� Under the assumption of the logistic regression model:

p(x; β) = Pr(G = 1 | X = x) =
exp

(
βTx

)
1 + exp (βTx)

1− p(x; β) = Pr(G = 2 | X = x) =
1

1 + exp (βTx)

� we substitute the above in `(β) :

`(β) =
N∑
i=1

[
yiβ

Txi − log
(

1 + eβ
T xi
)]
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Binary Classification

� The idea here is based on basic calculus. If we want to maximize `(β), we set
the first order partial derivatives of the function `(β) with respect to β1j to
zero.

∂`(β)

β1j

=
N∑
i=1

yixij −
N∑
i=1

xije
βT xi

1 + eβT xi

=
N∑
i=1

yixij −
N∑
i=1

p(x; β)xij

=
N∑
i=1

xij (yi − p (xi; β))

for all j = 0, 1, . . . , p.
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Binary Classification
� And, if we go through the math, we will find out that it is equivalent to the

matrix form below.
∂`(β)

∂β
=

N∑
i=1

xi (yi − p (xi; β))

Here xi is a column vector and yi is a scalar.
� To solve the set of p+ 1 nonlinear equations ∂`(β)

∂β1j
= 0, j = 0, 1, . . . , p, we will

use the Newton-Raphson algorithm.
� The Newton-Raphson algorithm requires the second-order derivatives or the

so-called Hessian matrix (a square matrix of the second order derivatives)
which is given by:

∂2`(β)

∂β∂βT
= −

N∑
i=1

xix
T
i p (xi; β) (1− p (xi; β))
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Binary Classification

� Starting with βold , a single Newton-Raphson update is given by this matrix
forumla:

βnew = βold −
(
∂2`(β)

∂β∂βT

)−1
∂`(β)

∂β

� Basically, if given an old set of parameters, we update the new set of
parameters by taking βold minus the inverse of the Hessian matrix times the
first order derivative vector. These derivatives are all evaluated at βold .
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