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Principal Components Analysis

» Principal Component Analysis (PCA) is a method of dimension reduction.
This is not directly related to prediction problem, but several regression
methods are directly dependant on it.

= The regression methods (PCR and PLS) will be considered later.

® Principal component analysis is one of the most common methods used for
linear dimension reduction.

® The motivation behind dimension reduction is that, the process gets unweildy
with a large number of variables while the large number does not add any new
information to the process.

m A linear combination of variables is then considered which are orthogonal to
one another, but the total variability within the sample is preserved as much
as possible.
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Principal Component Analysis

® Suppose the data is 10-dimensional but needs to be reduced to 2-dimensional.
The idea of principal component analysis is to use two directions that capture
the variation in the data as much as possible.

= An analogy may be drawn with variance inflation factors (VIF) in multiple
regression. If VIF corresponding to any predictor is large, that predictor is not
included in the model, as that variable does not contribute any new

information. ]

- R?
® On the other hand, because of linear dependence, the regression matrix may

become singular. In a multivariate situation, it may well happen that, a few
(or a large number of) variables have high interdependence.

VIF =
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Singular Value Decomposition (SVD)

® Singular value decomposition is the key part of principal components analysis.

m Assume that the columns of X are zero-centered, i.e., the estimated column
mean is subtracted from each column.

X1,1 Ti2 ... Tip

To1 T2 ... Tap
X= . .

IN1 TN2 ... TNp

m The SVD of the N x p matrix X has the form

X = UDV”
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Singular Value Decomposition (SVD)

® where
0 U= (uj,uy,...,uy) is an N x N orthogonal matrix. uj, j=1,...,N, form
an orthonormal basis for the space spanned by the column vectors of X.
0V = (vi,v2,...,vp) is an p x p orthogonal matrix. v;, j =1,...,p, form an

orthonormal basis for the space spanned by the row vectors of X.

0 D is a N x p rectangular matrix with nonzero elements along the first p x p
submatrix diagonal. diag (dy,ds,...,dp),dy > dy > --- > d, > 0 are the
singular values of X with N > p.

0 The columns of V (i.e., vj,j =1,...,p ) are the eigenvectors of XTX. They
are called principal component direction or eigenvectors of X.

0 The diagonal values in D (i.e., d;,j =1,---,p) are the square roots of the
eigenvalues of X7 X.
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Eigendecomposition

® The sample covariance matrix of X is given as:
S =X'X/N
= |f you do the Eigendecomposition of XX :

XX = (UDVT)" (UDV7)
=VDTUTUDV? = VD?*VT = VAVT = VAV!

® |t turns out that if you have done the singular value decomposition then you
already have the Eigendecomposition for X7X.
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Eigendecomposition

® The A is the diagonal part of matrix D with every element on the diagonal
squared.

= Also, we should point out that we can show using linear algebra that X7X is
a semi-positive definite matrix. This means that all of the eigenvalues are
guaranteed to be nonnegative. The eigen values are in matrix A. Since these
values are squared, every diagonal element is non-negative.

m The eigenvectors of X7 X, v;, can be obtained either by doing an Eigen
decomposition of X?X, or by doing a singular value decomposition from X.

m These Ust are called principal component directions of X. If you project X
onto the principal components directions you get the principal components.

Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)




Principal Component Analysis
000000800

Principle Components

m |t's easy to see that z; = Xv; = u;d;. Hence u; is simply the projection of
the row vectors of X, i.e., the input predictor vectors, on the direction v;,
scaled by d;. For example:

X171’01,1 + XLQULQ + ...+ XLPULP
X111+ Xoovig + ...+ Xopv1 )
71 — .

Xnavin + Xyovig + ..o+ Xypviy

The principal components of X are z; = d;u;,j =1,...,p.
® The first principal component of X, z;, has the largest sample variance
amongst all normalized linear comninations of the coulmns of X.

Var (z,) = di /N
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Principal Components
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Principal Components Analysis (PCA)

m Objective: Capture the intrinsic variability in the data. Reduce the
dimensionality of a data set, either to ease interpretation or as a way to avoid
overfitting and to prepare for subsequent analysis.

® The sample covariance matrix of X is S = XTX/N, since X has zero mean.
Eigendecomposition of X7 X :

X"X = (UDV")" (UDV") = vD"UTUDV” = VD?*V”

m The eigenvectors of X”X (i.e., v;, j=1,...,p ) are called principal
component directions of X.
® The first principal component direction v; has the following properties that
O vy is the eigenvector associated with the largest eigenvalue, d?, of X7 X.
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Principal Components Analysis (PCA)

0 z; = Xwv; has the largest sample variance amongst all normalized linear
combinations of the columns of X.
O zq is called the first principal component of X.
o we have Var (z;) = d?/N.
® The second principal component direction v, (the direction orthogonal to the
first component that has the largest projected variance) is the eigenvector
corresponding to the second largest eigenvalue, d3, of XX, and so on.

® The eigenvector for the kth largest eigenvalue corresponds to the kth principal
component direction ).

= The kth principal component of X, z;, has maximum variance di /N, subject
to being orthogonal to the earlier ones.
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Principal Components Regression (PCR)

® Principal component regression forms the derived input columns z,, = Xuv,,,
and then regresses y on zi, 2z, ...,z for some M < p. Since the z,, are
orthogonal, this regression is just a sum of univariate regressions:

Apcr o y]_ + Z emzm

where 0, = (1, ¥) / (Zm, Zm) . Since the z,, are each linear combinations of
the original x;, we can express the solution in terms of coefficients of the x;:

ﬁpcr Z emvm
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Principal Components Regression (PCR)

® As with ridge regression, principal components depend on the scaling of the
inputs, so typically we first standardize them.

= Note that if M = p, we would just get back the usual least squares estimates,
since the columns of Z = UD span the column space of X.

m For M < p we get a reduced regression. We see that principal components
regression is very similar to ridge regression: both operate via the principal
components of the input matrix.

= Ridge regression shrinks the coefficients of the principal components, shrinking
more depending on the size of the corresponding eigenvalue; principal
components regression discards the p — M smallest eigenvalue components.
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Partial Least Squares (PLS)

m This technique also constructs a set of linear combinations of the inputs for

regression, but unlike principal components regression it uses y (in addition to
X ) for this construction.

m Like principal component regression, partial least squares (PLS) is not scale
invariant, so we assume that each x; is standardized to have mean 0 and
variance 1.

Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)




Partial Least Squares (PLS)
ooe

Algorithm PLS

m Partial Least Squares

1. Standardize each x; to have mean zero and variance one. Set y(©® = 41, and

0 .
X‘g):X‘]’j:l’,p
2. Form=1,2,.
"z, =" 1¢mj gm D where @mj:<xg-m71),y>.

B O = (Zm,Y) / (Zm: Zm) -
Gm) = y(m=1) 1§ 5

(m-1)

= Orthogonahze each x; (m) _ y(m=1) _

with respect to z,, : X, =X;
|:<Zm7X§m 1)> / <Zmazm>i| Zm7j = 17 27 Ry
3. Output the sequence of fitted vectors {y(m>}f. Since the {z,}7" are linear in

the original x;, so is y(m ﬁpls( ). These linear coefficients can be
recovered from the sequence of PLS transformations.
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