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Subset Selection
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Introduction
� Variable subset selection is a technique which is used for data reduction in

data mining process. Data reduction reduces the size of data so that it can be
used for analysis purposes more efficiently.

� Benefits of performing variable selection/reduction:
� avoid curse of dimensionality
� reduce the computational cost
� improves accuracy
� avoid overfitting

� Worth to mention here that we are often not satisfied with the least squares
estimates
� The first is prediction accuracy: the least squares estimates often have low bias

but large variance.
� The second reason is interpretation. With a large number of predictors, we often

would like to determine a smaller subset that exhibit the strongest effects.

4/27 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)



Introduction Subset Selection Shrinkage Methods References

Introduction

� Carefully selected variables can improve model accuracy. But adding too many
can lead to overfitting.

� The first step in variable selection is to define a criterion function that is often
a function of the classification/residual error.

� Note that, the use of classification/residual error in the criterion function
makes variable selection procedures dependent on the specific model used.

� The most straightforward approach would require

(i) Examining all

(
p
k

)
or pCk possible subsets of size k,

(ii) Selecting the subset that performs the best according to the criterion function.

� The number of subsets grows combinatorially, making the exhaustive search
impractical.
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Best-Subset Selection

� Best subset regression finds for each k ∈ {0, 1, 2, . . . , } the subset of size k
that gives smallest residual sum of squares (RSS).

� An efficient algorithm— the leaps
and bounds procedure (Furnival and
Wilson, 1974) — makes this feasible
for p as large as 30 or 40.

� The question of how to choose k
involves the tradeoff between bias
and variance, typically we choose the
smallest model that minimizes an
estimate of the expected prediction
error.

58 3. Linear Methods for Regression
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FIGURE 3.5. All possible subset models for the prostate cancer example. At
each subset size is shown the residual sum-of-squares for each model of that size.

cross-validation to estimate prediction error and select k; the AIC criterion
is a popular alternative. We defer more detailed discussion of these and
other approaches to Chapter 7.

3.3.2 Forward- and Backward-Stepwise Selection

Rather than search through all possible subsets (which becomes infeasible
for pmuch larger than 40), we can seek a good path through them. Forward-
stepwise selection starts with the intercept, and then sequentially adds into
the model the predictor that most improves the fit. With many candidate
predictors, this might seem like a lot of computation; however, clever up-
dating algorithms can exploit the QR decomposition for the current fit to
rapidly establish the next candidate (Exercise 3.9). Like best-subset re-
gression, forward stepwise produces a sequence of models indexed by k, the
subset size, which must be determined.

Forward-stepwise selection is a greedy algorithm, producing a nested se-
quence of models. In this sense it might seem sub-optimal compared to
best-subset selection. However, there are several reasons why it might be
preferred:
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Stepwise selection
� An exhaustive search for the subset may not be feasible if p is very large.
� There are two main alternatives.

� Forward stepwise selection
� Backward stepwise selection

� Forward stepwise selection:
� First, we approximate the response variable Y with a constant (i.e., an

intercept-only regression model).
� Then, we gradually add one more variable at a time (or add main effects first,

then interactions).
� Every time we always choose from the rest of the variables the one that yields

the best accuracy in prediction when added to the pool of already selected
variables. This accuracy can be measured by the R-square, F-statistic, AIC, BIC,
etc.
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Stepwise selection

� For example, if we have 10 predictor variables, first we would approximate Y
with a constant, and then use one variable out of the 10 (I would perform 10
regressions, each time using a different predictor variable; for every regression I
have a residual sum of squares; the variable that yields the minimum residual
sum of squares is chosen and put in the pool of selected variables). We then
proceed to choose the next variable from the 9 left, etc.

� Backward stepwise selection:
� This is similar to forward stepwise selection, except that we start with the full

model using all the predictors and gradually delete variables one at a time.
� There are various methods developed to choose the number of predictors, for

instance the F-ratio test. We stop forward or backward stepwise selection when
no predictor produces an F-ratio statistic greater than some threshold.
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Examples: Iris data representation (k = 1)
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Figure: Histogram plot of Iris features
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Examples: Iris data representation (k = 2)
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Figure: Scatter plot of the iris data. Off-diagonal cells show scatters of pairs of features x1, x2, x3, x4.
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Example: Stepwise forward selection

1. First, the best single feature is selected.

2. Then, pairs of features are formed using
one of the remaining features and this best
feature, and the best pair is selected.

3. Next, triplets of features are formed using
one of the remaining features and these
two best features, and the best triplet is
selected.

4. This procedure continues until all or a
predefined number of features are selected.

Examples

56 58 60 62 64 66 68 70 72 74

AERIAL_GABOR1::COARSE0DEG
AERIAL::BAND3

AERIAL_GABOR2::COARSE90DEG
AERIAL::BAND2
AERIAL::BAND1

AERIAL_GABOR2::FINE0DEG
IKONOS3::BAND2

AERIAL_GABOR1::COARSE90DEG
AERIAL_GABOR2::FINE90DEG
AERIAL_GABOR1::FINE90DEG

IKONOS3::BAND1
AERIAL_GABOR2::COARSE0DEG

IKONOS2_GABOR1::COARSE90DEG
IKONOS2_GABOR1::FINE90DEG

IKONOS3::BAND3
IKONOS3::BAND4

IKONOS2_GABOR1::FINE0DEG
IKONOS2_GABOR1::COARSE0DEG

AERIAL_GABOR1::FINE0DEG
IKONOS2_GABOR4::COARSE0DEG

IKONOS2_GABOR4::FINE0DEG
IKONOS2_GABOR4::COARSE90DEG

IKONOS2_GABOR4::FINE90DEG
IKONOS2::BAND4
IKONOS2::BAND2
IKONOS2::BAND3
IKONOS2::BAND1
DEM::ELEVATION

Sequential forward selection

Classification accuracy

Figure 24: Results of sequential forward feature selection for classification of
a satellite image using 28 features. x-axis shows the classification accuracy
(%) and y-axis shows the features added at each iteration (the first iteration is
at the bottom). The highest accuracy value is shown with a star.
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Example: Stepwise backward selection

� First, the criterion function is computed
for all p features.

� Then, each feature is deleted one at a
time, the criterion function is computed for
all subsets with p− 1 features, and the
worst feature is discarded.

� Next, each feature among the remaining
p− 1 is deleted one at a time, and the
worst feature is discarded to form a subset
with p− 2 features.

� This procedure continues until one feature
or a predefined number of features are left.

Examples

54 56 58 60 62 64 66 68 70 72

NONE
DEM::ELEVATION
IKONOS3::BAND3

AERIAL_GABOR1::COARSE90DEG
IKONOS2::BAND1
IKONOS2::BAND3

IKONOS2_GABOR4::FINE90DEG
AERIAL_GABOR2::COARSE0DEG

AERIAL_GABOR1::FINE0DEG
AERIAL_GABOR2::FINE90DEG

IKONOS2_GABOR4::COARSE90DEG
IKONOS3::BAND4

IKONOS2_GABOR1::FINE90DEG
IKONOS3::BAND1
IKONOS2::BAND2

IKONOS2_GABOR4::COARSE0DEG
IKONOS2_GABOR1::COARSE0DEG

IKONOS2_GABOR1::COARSE90DEG
IKONOS2_GABOR1::FINE0DEG

IKONOS2::BAND4
IKONOS2_GABOR4::FINE0DEG
AERIAL_GABOR1::FINE90DEG

AERIAL_GABOR2::COARSE90DEG
AERIAL_GABOR1::COARSE0DEG

IKONOS3::BAND2
AERIAL::BAND3
AERIAL::BAND2

AERIAL_GABOR2::FINE0DEG

Sequential backward selection

Classification accuracy

Figure 25: Results of sequential backward feature selection for classification
of a satellite image using 28 features. x-axis shows the classification
accuracy (%) and y-axis shows the features removed at each iteration (the
first iteration is at the bottom). The highest accuracy value is shown with a
star.
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Summary

� The choice between dimensionality reduction and variable selection depends
on the application domain and the specific training data.

� Variable selection leads to savings in computational costs and the selected
variable retain their original physical interpretation.

� Dimensionality reduction with transformations may provide a better
discriminative ability but these new variables may not have a clear physical
meaning.

� There is no guarantee that the subsets obtained from stepwise procedures will
contain the same variables or even be the “best” subset.

� When there are more variables than observations (p > n), backward
elimination is typically not a feasible procedure.
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Shrinkage Methods
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Introduction

� It is not unusual to see the number of input variables greatly exceed the
number of observations, e.g. micro-array data analysis, environmental
pollution studies.

� Subset selection is a discrete process—variables are either retained or
discarded—it often exhibits high variance, and so doesn’t reduce the
prediction error of the full model.

� Shrinkage methods are more continuous, and don’t suffer as much from high
variability.

� Shrinkage methods for regression
� Ridge Regression
� The Lasso
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Ridge Regression
� Ridge regression is a method of estimating the coefficients of

multiple-regression models in scenarios where independent variables are highly
correlated.

� With many predictors, fitting the full model without penalization will result in
large prediction intervals, and LS regression estimator may not uniquely exist.

� Because the LS estimates depend upon
(
XTX

)−1
, we would have problems in

computing βLS if XTX were singular or nearly singular.
� In those cases, small changes to the elements of X lead to large changes in(

XTX
)−1

.
� The least square estimator βLS may provide a good fit to the training data,

but it will not fit sufficiently well to the test data.
� One way out of this situation is to abandon the requirement of an unbiased

estimator.
16/27 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Ridge Regression

� We assume only that X’s and y have been centered, so that we have no need
for a constant term in the regression:
� X is a n× (p) matrix with centered columns,
� y is a centered n-vector.

� Hoerl and Kennard (1970) proposed that potential instability in the LS
estimator

β̂ =
(
XTX

)−1
XTy

could be improved by adding a small constant value λ to the diagonal entries
of the matrix XTX before taking its inverse. The result is the ridge regression
estimator

β̂ridge =
(
XTX + λIp

)−1
XTy
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Ridge Regression
� Ridge regression shrinks the regression coefficients by imposing a penalty on their size. The

ridge coefficients minimize a penalized residual sum of squares,

β̂ridge = argmin
β


N∑
i=1

yi − β0 − p∑
j=1

xijβj

2

+ λ

p∑
j=1

β2
j

 .

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage: the larger the
value of λ, the greater the amount of shrinkage.

� Which is equivalent to

β̂ridge =argmin
β

N∑
i=1

yi − β0 − p∑
j=1

xijβj

2

,

subject to

p∑
j=1

β2
j ≤ t.
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Ridge Regression

� Therefore, ridge regression puts further constraints on the parameters, βj’s, in
the linear model.

� In this case, what we are doing is that instead of just minimizing the residual
sum of squares we also have a penalty term on the β’s. This penalty term is λ
(a pre-chosen constant) times the squared norm of the β vector.

� This means that if the βj’s take on large values, the optimization function is
penalized.

� We would prefer to take smaller βj’s, or βj’s that are close to zero to drive the
penalty term small.
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Geometric Interpretation of Ridge Regression

� The ellipses correspond to the contours of
residual sum of squares (RSS): the inner ellipse
has smaller RSS, and RSS is minimized at
ordinary least square (OLS) estimates.

� For p = 2, the constraint in ridge regression
corresponds to a circle,

∑p
j=1 β

2
j < t.

� We are trying to minimize the ellipse size and
circle simultaneously in the ridge regression. The
ridge estimate is given by the point at which the
ellipse and the circle touch.

� There is a trade-off between the penalty term
and RSS.
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Geometric Interpretation of Ridge Regression

� Maybe a large β would give you a better residual sum of squares but then it
will push the penalty term higher. This is why you might actually prefer
smaller β’s with worse residual sum of squares.

� From an optimization perspective, the penalty term is equivalent to a
constraint on the β’s.

� The function is still the residual sum of squares but now you constrain the
norm of the βj’s to be smaller than some constant t.

� There is a correspondence between λ and t. The larger the λ is, the more you
prefer the βj’s close to zero. In the extreme case when λ = 0, then you would
simply be doing a normal linear regression.

� And the other extreme as λ approaches infinity, you set all the β’s to zero.
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The Lasso
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Lasso
� The lasso is a shrinkage method like ridge, with subtle but important

differences. The lasso estimate is defined by

β̂ lasso =argmin
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

subject to

p∑
j=1

|βj| ≤ t.

� Just as in ridge regression, we can re-parametrize the constant β0 by
standardizing the predictors; the solution for β̂0 is ȳ, and thereafter we fit a
model without an intercept.

� In the signal processing literature, the lasso is also known as basis pursuit
(Chen et al., 1998).
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Lasso

� We can also write the lasso problem in the equivalent Lagrangian form

β̂ lasso = argmin
β

1

2

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

+ λ

p∑
j=1

|βj|

 .

Notice the similarity to the ridge regression problem: the L2 ridge penalty∑p
1 β

2
j is replaced by the L1 lasso penalty

∑p
1 |βj|.

� Some of the coefficients may be shrunk exactly to zero. The least absolute
shrinkage and selection operator, or lasso, as described in Tibshirani (1996) is
a technique that has received a great deal of interest.
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Geometric Interpretation

� The lasso performs L1 shrinkage, so that there are “corners” in the constraint,
which in two dimensions corresponds to a diamond. If the sum of squares “hits” one
of these corners, then the coefficient corresponding to the axis is shrunk to zero.

� As p increases, the multidimensional diamond
has an increasing number of corners, and so it
is highly likely that some coefficients will be
set equal to zero. Hence, the lasso performs
shrinkage and (effectively) subset selection.

� In contrast with subset selection, Lasso
performs a soft thresholding: as the
smoothing parameter is varied, the sample
path of the estimates moves continuously to
zero.

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X.M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

β^ β^2
. .β

1

β 2

β1
β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.
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