Foundation of Machine Learning (CSE4032) Lecture 03: Simple and Multiple Linear Regression

Dr. Kundan Kumar Associate Professor Department of ECE

Faculty of Engineering (ITER) S'O'A Deemed to be University, Bhubaneswar, India-751030 © 2021 Kundan Kumar, All Rights Reserved

Introduction	Simple regression model	Multiple regression model	Multiple regression model from simple univariate regression	References
•0				

Outline

- 2 Simple regression model
- **3** Multiple regression model
- 4 Multiple regression model from simple univariate regression

5 References

Introduction 00	Simple regression model	Multiple regression model	Multiple regression model from simple univariate regression	References 00

Introduction

- In statistics, linear regression is a linear approach to modeling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables).
- Linear regression is a linear model, e.g. a model that assumes a linear relationship between the input variables (X) and the single output variable (y). More specifically, that y can be calculated from a linear combination of the input variables (X).
- When there is a single input variable (X), the method is referred to as simple linear regression; however, when there are multiple input variables, literature from statistics often refers to the method as multiple linear regression.

Introduction 00	Simple regression model ●0000	Multiple regression model	Multiple regression model from simple univariate regression 00000000	References 00

Simple Linear Regression Model

Simple Linear Regression

- It is a very straightforward simple linear approach for predicting a quantitative response Y on the basis of a single variable X.
- It assumes that there is approximately a linear relationship between X and Y.
 Mathematically, we can write this linear relationship as

 $Y \approx \beta_0 + \beta_1 X$

• For example, X may represent TV advertising and Y may represent sales. Then we can regress sales onto TV by fitting the model

sales $\approx \beta_0 + \beta_1 \times \text{TV}.$

Here, β₀ and β₁ are two unknown constants that represent the intercept and slope terms in the linear model. Together, β₀ and β₁ are intercept-slope known as the model coefficients or parameters.

Simple regression model

 If we can estimate the model coefficients, β̂₀ and β̂₁, using the training data then we can predict future sales on the basis of a particular value of TV advertising by computing

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

where \hat{y} indicates a prediction of Y on the basis of X = x.

- Estimating the Coefficients
 - □ Let $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ represent *n* observation pairs, each of which consists of a measurement of *X* and a measurement of *Y*.
 - \Box Our goal is to obtain coefficient estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ such that the linear model fits the available data well—that is, so that $y_i \approx \hat{\beta}_0 + \hat{\beta}_1 x_i$ for $i = 1, \ldots, n$.
- Most common approach involves minimizing the least squares criterion.

Multiple regression model from simple univariate regression 0000000

References 00

Simple regression model

- Let ŷ_i = β̂₀ + β̂₁x_i be the prediction for Y based on the *i*th value of X.
- Then $e_i = y_i \hat{y}_i$ represents the *i*th residual
- This is the difference between the *i*th observed response value and the *i*th response value that is predicted by our linear model.
- We define the residual sum of squares (RSS) as

$$\left(\text{RSS} = e_1^2 + e_2^2 + \dots + e_n^2 \right)$$

Simple regression model

or equivalently as

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \ldots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

- The least squares approach chooses $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS.
- Using some calculus, one can show that the minimizers are

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x}) (y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1} \bar{x}$$

where $\bar{y} \equiv \frac{1}{n} \sum_{i=1}^{n} y_i$ and $\bar{x} \equiv \frac{1}{n} \sum_{i=1}^{n} x_i$ are the sample means.

 Above equation defines the least squares coefficient estimates for simple linear regression.

Introduction	Simple regression model	Multiple regression model	Multiple regression model from simple univariate regression	References
00		●0000000000	0000000	00

Multiple Linear Regression Model

- A linear regression model assumes that the regression function E(Y|X) is linear in the inputs X_1, \ldots, X_p .
- They are simple and often provide an adequate and interpretable description of how the inputs affect the output.
- An understanding of linear methods is essential for understanding nonlinear ones.
- In fact, many nonlinear techniques are direct generalizations of the linear methods discussed here.

Introduction 00	Simple regression model	Multiple regression model	Multiple regression model from simple univariate regression	References 00

• Suppose, we have an input vector $X^T = (X_1, X_2, \dots, X_p)$ and want to predict a real-valued output Y. The linear regression model has the form

$$f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$$

- The linear model either assumes that the regression function $E(Y \mid X)$ is linear, or that the linear model is a reasonable approximation.
- Here, the β_j's are unknown parameters or coefficients, and the variables X_j can come from different sources.

- The variable X_j can come from different sources
 - Quantitative inputs
 - □ Transformation of quantitative i/p, for e.g., log, square root, square, exp, etc.
 - $\hfill\square$ Basic expansion, $X_2=X_1^2, X_3=X_1^3$ leading to a polynomial representation.
 - Numeric or dummy coding of the levels of qualitative i/p.
 - □ Interaction between variables, e.g., $X_3 = X_1 \cdot X_2$.
- No matter the source of the X_j , the model is linear in the parameters.

- Typically, we have a set of training data (x₁, y₁)...(x_N, y_N) from which to estimate the parameters β.
- Each $x_i = (x_{i1}, x_{i2}, \dots, x_{ip})^T$ is a vector of feature measurements for the *i*th case.
- The most popular estimation method is least squares, in which we pick the coefficients $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$ to minimize the residual sum of squares

$$\operatorname{RSS}(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$
$$= \sum_{i=1}^{N} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2$$

• Criteria measures the avaerage lack of fit.

Multiple regression model from simple univariate regression 00000000

References 00

Multiple regression model

- From a statistical point of view, this criterion is reasonable if the training observations (x_i, y_i) represent independent random draws from their population. Even if the x_i 's were not drawn randomly, the criterion is still valid if the y_i 's are conditionally independent given the inputs x_i .
- How to minimize the criteria function?

$$X \to N \times (p+1)$$

$$Y \to N \times 1$$

Multiple regression model from simple univariate regression

References

Multiple regression model

Then we can write

$$\operatorname{RSS}(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)^T$$

 \blacksquare Differentiating w.r.t β we get

$$\frac{\partial \operatorname{RSS}}{\partial \beta} = -2\mathbf{X}^T (\mathbf{y} - \mathbf{X}\beta)$$
$$\frac{\partial^2 \operatorname{RSS}}{\partial \beta \partial \beta^T} = 2\mathbf{X}^T \mathbf{X}$$

Assuming (for the moment) that X has full column rank, and hence X^TX is positive definite, we set the first derivative to zero

$$\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = 0 \tag{1}$$

• Then, we obtain the unique solution

$$\hat{eta} = \left(\mathbf{X}^T \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{y}$$

The predicted values at an input vector x₀ are given by f̂ (x₀) = (1 : x₀)^T β̂; the fitted values at the training inputs are

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X} \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \mathbf{y}$$

where $\hat{y}_i = \hat{f}(x_i)$.

The matrix H = X (X^TX)⁻¹ X^T is sometimes called the "hat" matrix because it puts the hat on y.

- We minimize RSS(β) = ||y Xβ||² by choosing β̂ so that the residual vector y ŷ is orthogonal to this subspace. This orthogonality is expressed in Eq. (1), and the resulting estimate ŷ is hence the orthogonal projection of y onto this subspace.
- The hat matrix *H* computes the orthogonal projection, and hence it is also known as a projection matrix.
- If the columns of X are not linearly independent, so that X is not of full rank.
 For example, if two of the inputs were perfectly correlated, (e.g., x₂ = 3x₁).
 Then X^TX is singular and the least squares coefficients β are not uniquely defined.
- However, the fitted values ŷ = Xβ̂ are still the projection of y onto the column space of X; there is just more than one way to express that projection in terms of the column vectors of X.

- Rank deficiencies can also occur in signal and image analysis, where the number of inputs p can exceed the number of training cases N. In this case, the features are typically reduced by filtering or else the fitting is controlled by regularization.
- Up to now we have made minimal assumptions about the true distribution of the data. Sampling properties of β̂ assume y_i are uncorrelated and have constant variance σ², and that the x_i are fixed (non random).

$$\operatorname{Var}(\hat{\beta}) = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \sigma^2$$

Typically one estimates the variance σ^2 by

$$\hat{\sigma}^2 = \frac{1}{N-p-1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2.$$

Multiple regression model: drawn inference

• We assume as $Y = f(x) = \beta_0 + \sum_{i=1}^n X_j \beta_j$ is correct model, that means

$$Y = \mathbb{E} \left(Y \mid X_1, \dots, X_p \right) + \varepsilon$$
$$= \beta_0 + \sum_{j=1}^p X_j \beta_j + \varepsilon$$

- where the error ε is a Gaussian random variable with expectation zero and variance σ^2 , written $\varepsilon \sim N\left(0,\sigma^2\right)$.
- It is easy to show that

$$\hat{\boldsymbol{\beta}} \sim N\left(\boldsymbol{\beta}, \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \sigma^2\right)$$

Introduction 00	Simple regression model	Multiple regression model	Multiple regression model from simple univariate regression ●0000000	Refe 00

- The linear model with p > 1 inputs is called the multiple linear regression model.
- Suppose first that we have a univariate model with no intercept, that is,

 $Y = X\beta + \epsilon$

• The least squares estimate and residuals are

$$\hat{\beta} = \frac{\sum_{1}^{N} x_i y_i}{\sum_{1}^{N} x_i^2}$$
$$r_i = y_i - x_i \hat{\beta}$$

In convenient vector notation, we let $\mathbf{y} = (y_1, \dots, y_N)^T$, $\mathbf{x} = (x_1, \dots, x_N)^T$ and define

$$egin{aligned} &\langle \mathbf{x}, \mathbf{y}
angle &= \sum_{i=1}^{T} x_i y_i, \ &= \mathbf{x}^T \mathbf{y} \end{aligned}$$

the inner product between ${\bf x}$ and ${\bf y}.$

Then we can write

$$\hat{\beta} = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\langle \mathbf{x}, \mathbf{x} \rangle}$$
$$\mathbf{r} = \mathbf{y} - \mathbf{x} \hat{\beta}$$

This simple univariate regression provides the building block for multiple linear regression.

Suppose next that the inputs x₁, x₂,..., x_p (the columns of the data matrix X) are orthogonal; that is

$$\langle \mathbf{x}_j, \mathbf{x}_k
angle = 0$$
 for all $j \neq k$.

- Then it is easy to check that the multiple least squares estimates
 ^ˆ
 ^ĵ
 _j are equal to (x_j, y) / (x_j, x_j) the univariate estimates.
- In other words, when the inputs are orthogonal, they have no effect on each other's parameter estimates in the model.
- Orthogonal inputs occur most often with balanced, designed experiments (where orthogonality is enforced), but almost never with observational data.
- Hence, we will have to orthogonalize them in order to carry this idea further.

Suppose next that we have an intercept and a single input x. Then the least squares coefficient of x has the form

$$\hat{\beta}_1 = rac{\langle \mathbf{x} - \bar{x} \mathbf{1}, \mathbf{y} \rangle}{\langle \mathbf{x} - \bar{x} \mathbf{1}, \mathbf{x} - \bar{x} \mathbf{1} \rangle}$$

where $\bar{x} = \sum_i x_i / N$, and $\mathbf{1} = \mathbf{x}_0$, the vector of N ones.

- We can view the estimate of
 [^]
 [^]
 - 1. regress x on 1 to produce the residual $z = x \bar{x}1$;
 - 2. regress y on the residual z to give the coefficient $\hat{\beta}_1$.
- In this procedure, "regress **b** on **a**" means a simple univariate regression of **b** on **a** with no intercept, producing coefficient $\hat{\gamma} = \langle \mathbf{a}, \mathbf{b} \rangle / \langle \mathbf{a}, \mathbf{a} \rangle$ and residual vector $\mathbf{b} \hat{\gamma}\mathbf{a}$. We say that **b** is adjusted for **a**, or is "orthogonalized" with respect to **a**.

- Step 1 orthogonalizes \mathbf{x} with respect to $\mathbf{x}_0 = \mathbf{1}$.
- Step 2 is just a simple univariate regression, using the orthogonal predictors 1 and z.

Note that the inputs z₀,..., z_{j-1} in step 2 are orthogonal, hence the simple regression coefficients computed there are in fact also the multiple regression coefficients. The result of this algorithm is

$$\hat{eta}_p = rac{\langle \mathbf{z}_p, \mathbf{y} \rangle}{\langle \mathbf{z}_p, \mathbf{z}_p \rangle}$$
 (2)

Stated more generally, the *j*th multiple regression coefficient is the univariate regression coefficient of y on x_{j·012...(j-1)(j+1)...p}, the residual after regressing x_j on x₀, x₁,..., x_{j-1}, x_{j+1},..., x_p : The multiple regression coefficient β_j represents the additional contribution of x_j on y, after x_j has been adjusted for x₀, x₁,..., x_{j-1}, x_{j+1},..., x_p

From (2), we also obtain an alternate formula for the variance estimates:

$$\operatorname{Var}\left(\hat{\beta}_{p}\right) = \frac{\sigma^{2}}{\left\langle \mathbf{z}_{p}, \mathbf{z}_{p} \right\rangle} = \frac{\sigma^{2}}{\left\|\mathbf{z}_{p}\right\|^{2}}$$

In other words, the precision with which we can estimate \(\beta_p\) depends on the length of the residual vector \(\mathbf{z}_p\); this represents how much of \(\mathbf{x}_p\) is unexplained by the other \(\mathbf{x}_k\)'s.

- Above discussed Algorithm is known as the Gram–Schmidt procedure for multiple regression, and is also a useful numerical strategy for computing the estimates.
- We can represent step 2 of the Algorithm in matrix form:

 $\mathbf{X} = \mathbf{Z} \Gamma$

where Z has as columns the z_j (in order), and Γ is the upper triangular matrix with entries $\hat{\gamma}_{kj}$.

• Introducing the diagonal matrix **D** with *j*th diagonal entry $D_{jj} = ||\mathbf{z}_j||$, we get

 $\mathbf{X} = \mathbf{Z}\mathbf{D}^{-1}\mathbf{D}\Gamma$ $= \mathbf{Q}\mathbf{R}$

the so-called QR decomposition of X. Here Q is an $N \times (p+1)$ orthogonal matrix, $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$, and R is a $(p+1) \times (p+1)$ upper triangular matrix. The QR decomposition represents a convenient orthogonal basis for the column space of X. It is easy to see, for example, that the least squares solution is given by

$$\hat{\boldsymbol{\beta}} = \mathbf{R}^{-1} \mathbf{Q}^T \mathbf{y}, \\ \hat{\mathbf{y}} = \mathbf{Q} \mathbf{Q}^T \mathbf{y}$$
(3)

Equation (3) is easy to solve because \mathbf{R} , is upper triangular.

References

- The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition, Hastie, Tibshirani, and Friedman, Springer.
- In Introduction to Statistical Learning with Application in R, Second Edition, James, Witten, Hastie, and Tibshirani, Springer.

Introduction 00	Simple regression model	Multiple regression model	Multiple regression model from simple univariate regression	References 0●

Thank you!