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Introduction

� In statistics, linear regression is a linear approach to modeling the relationship
between a scalar response (or dependent variable) and one or more
explanatory variables (or independent variables).

� Linear regression is a linear model, e.g. a model that assumes a linear
relationship between the input variables (X) and the single output variable
(y). More specifically, that y can be calculated from a linear combination of
the input variables (X).

� When there is a single input variable (X), the method is referred to as simple
linear regression; however, when there are multiple input variables, literature
from statistics often refers to the method as multiple linear regression.
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Simple Linear Regression Model
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Simple Linear Regression
� It is a very straightforward simple linear approach for predicting a quantitative

response Y on the basis of a single variable X.
� It assumes that there is approximately a linear relationship between X and Y .

Mathematically, we can write this linear relationship as

Y ≈ β0 + β1X

� For example, X may represent TV advertising and Y may represent sales.
Then we can regress sales onto TV by fitting the model

sales ≈ β0 + β1 × TV.

� Here, β0 and β1 are two unknown constants that represent the intercept and
slope terms in the linear model. Together, β0 and β1 are intercept-slope
known as the model coefficients or parameters.
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Simple regression model

� If we can estimate the model coefficients, β̂0 and β̂1, using the training data
then we can predict future sales on the basis of a particular value of TV
advertising by computing

ŷ = β̂0 + β̂1x

where ŷ indicates a prediction of Y on the basis of X = x.

� Estimating the Coefficients
� Let (x1, y1), (x2, y2), . . . , (xn, yn) represent n observation pairs, each of which

consists of a measurement of X and a measurement of Y .
� Our goal is to obtain coefficient estimates β̂0 and β̂1 such that the linear model

fits the available data well—that is, so that yi ≈ β̂0 + β̂1xi for i = 1, . . . , n.

� Most common approach involves minimizing the least squares criterion.
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Simple regression model
62 3. Linear Regression
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FIGURE 3.1. For the Advertising data, the least squares fit for the regression
of sales onto TV is shown. The fit is found by minimizing the sum of squared
errors. Each grey line segment represents an error, and the fit makes a compro-
mise by averaging their squares. In this case a linear fit captures the essence of
the relationship, although it is somewhat deficient in the left of the plot.

Let ŷi = β̂0 + β̂1xi be the prediction for Y based on the ith value of X .
Then ei = yi− ŷi represents the ith residual—this is the difference between

residual
the ith observed response value and the ith response value that is predicted
by our linear model. We define the residual sum of squares (RSS) as

residual sum
of squares

RSS = e21 + e22 + · · ·+ e2n,

or equivalently as

RSS = (y1− β̂0− β̂1x1)
2+(y2− β̂0− β̂1x2)

2+ . . .+(yn− β̂0− β̂1xn)
2. (3.3)

The least squares approach chooses β̂0 and β̂1 to minimize the RSS. Using
some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
,

β̂0 = ȳ − β̂1x̄,

(3.4)

where ȳ ≡ 1
n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means. In other

words, (3.4) defines the least squares coefficient estimates for simple linear
regression.
Figure 3.1 displays the simple linear regression fit to the Advertising

data, where β̂0 = 7.03 and β̂1 = 0.0475. In other words, according to

� Let ŷi = β̂0 + β̂1xi be the prediction
for Y based on the ith value of X.

� Then ei = yi − ŷi represents the
ith residual

� This is the difference between the ith
observed response value and the ith
response value that is predicted by
our linear model.

� We define the residual sum of squares (RSS) as

RSS = e21 + e22 + · · ·+ e2n
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Simple regression model
� or equivalently as

RSS =
(
y1 − β̂0 − β̂1x1

)2
+
(
y2 − β̂0 − β̂1x2

)2
+ . . .+

(
yn − β̂0 − β̂1xn

)2

� The least squares approach chooses β̂0 and β̂1 to minimize the RSS.
� Using some calculus, one can show that the minimizers are

β̂1 =

∑n
i=1 (xi − x̄) (yi − ȳ)∑n

i=1 (xi − x̄)2

β̂0 = ȳ − β̂1x̄
where ȳ ≡ 1

n

∑n
i=1 yi and x̄ ≡ 1

n

∑n
i=1 xi are the sample means.

� Above equation defines the least squares coefficient estimates for simple linear
regression.

8/31 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)



Introduction Simple regression model Multiple regression model Multiple regression model from simple univariate regression References

Multiple Linear Regression Model
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Multiple regression model

� A linear regression model assumes that the regression function E(Y |X) is
linear in the inputs X1, . . . , Xp.

� They are simple and often provide an adequate and interpretable description
of how the inputs affect the output.

� An understanding of linear methods is essential for understanding nonlinear
ones.

� In fact, many nonlinear techniques are direct generalizations of the linear
methods discussed here.
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Multiple regression model

� Suppose, we have an input vector XT = (X1, X2, . . . , Xp) and want to predict
a real-valued output Y . The linear regression model has the form

f(X) = β0 +

p∑

j=1

Xjβj

� The linear model either assumes that the regression function E(Y | X) is
linear, or that the linear model is a reasonable approximation.

� Here, the βj’s are unknown parameters or coefficients, and the variables Xj

can come from different sources.
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Multiple regression model

� The variable Xj can come from different sources
� Quantitative inputs
� Transformation of quantitative i/p, for e.g., log, square root, square, exp, etc.
� Basic expansion, X2 = X2

1 , X3 = X3
1 leading to a polynomial representation.

� Numeric or dummy coding of the levels of qualitative i/p.
� Interaction between variables, e.g., X3 = X1 ·X2.

� No matter the source of the Xj, the model is linear in the parameters.
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Multiple regression model
� Typically, we have a set of training data (x1, y1) . . . (xN , yN) from which to

estimate the parameters β.
� Each xi = (xi1, xi2, . . . , xip)

T is a vector of feature measurements for the ith
case.

� The most popular estimation method is least squares, in which we pick the
coefficients β = (β0, β1, . . . , βp)

T to minimize the residual sum of squares

RSS(β) =
N∑

i=1

(yi − f (xi))
2

=
N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2

� Criteria measures the avaerage lack of fit.
13/31 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Multiple regression model
3.2 Linear Regression Models and Least Squares 45
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FIGURE 3.1. Linear least squares fitting with X ∈ IR2. We seek the linear
function of X that minimizes the sum of squared residuals from Y .

space occupied by the pairs (X,Y ). Note that (3.2) makes no assumptions
about the validity of model (3.1); it simply finds the best linear fit to the
data. Least squares fitting is intuitively satisfying no matter how the data
arise; the criterion measures the average lack of fit.

How do we minimize (3.2)? Denote by X the N × (p + 1) matrix with
each row an input vector (with a 1 in the first position), and similarly let
y be the N -vector of outputs in the training set. Then we can write the
residual sum-of-squares as

RSS(β) = (y −Xβ)T (y −Xβ). (3.3)

This is a quadratic function in the p + 1 parameters. Differentiating with
respect to β we obtain

∂RSS

∂β
= −2XT (y −Xβ)

∂2RSS

∂β∂βT
= 2XTX.

(3.4)

Assuming (for the moment) that X has full column rank, and hence XTX
is positive definite, we set the first derivative to zero

XT (y −Xβ) = 0 (3.5)

to obtain the unique solution

β̂ = (XTX)−1XTy. (3.6)

� From a statistical point of view, this criterion is
reasonable if the training observations (xi, yi)
represent independent random draws from their
population. Even if the xi ’s were not drawn
randomly, the criterion is still valid if the yi ’s are
conditionally independent given the inputs xi.

� How to minimize the criteria function?

X → N × (p+ 1)

Y → N × 1

14/31 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Multiple regression model
� Then we can write

RSS(β) = (y −Xβ)T (y −Xβ)

� Differentiating w.r.t β we get

∂ RSS

∂β
= −2XT (y −Xβ)

∂2RSS

∂β∂βT
= 2XTX

� Assuming (for the moment) that X has full column rank, and hence XTX is
positive definite, we set the first derivative to zero

XT (y −Xβ) = 0 (1)
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Multiple regression model
� Then, we obtain the unique solution

β̂ =
(
XTX

)−1
XTy

� The predicted values at an input vector x0
are given by f̂ (x0) = (1 : x0)

T β̂; the
fitted values at the training inputs are

ŷ = Xβ̂ = X
(
XTX

)−1
XTy

where ŷi = f̂ (xi) .

46 3. Linear Methods for Regression
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FIGURE 3.2. The N-dimensional geometry of least squares regression with two
predictors. The outcome vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection ŷ represents the vector
of the least squares predictions

The predicted values at an input vector x0 are given by f̂(x0) = (1 : x0)
T β̂;

the fitted values at the training inputs are

ŷ = Xβ̂ = X(XTX)−1XTy, (3.7)

where ŷi = f̂(xi). The matrix H = X(XTX)−1XT appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.

Figure 3.2 shows a different geometrical representation of the least squares
estimate, this time in IRN . We denote the column vectors ofX by x0,x1, . . . ,xp,
with x0 ≡ 1. For much of what follows, this first column is treated like any
other. These vectors span a subspace of IRN , also referred to as the column
space of X. We minimize RSS(β) = ‖y −Xβ‖2 by choosing β̂ so that the
residual vector y − ŷ is orthogonal to this subspace. This orthogonality is
expressed in (3.5), and the resulting estimate ŷ is hence the orthogonal pro-
jection of y onto this subspace. The hat matrix H computes the orthogonal
projection, and hence it is also known as a projection matrix.

It might happen that the columns of X are not linearly independent, so
that X is not of full rank. This would occur, for example, if two of the
inputs were perfectly correlated, (e.g., x2 = 3x1). Then XTX is singular

and the least squares coefficients β̂ are not uniquely defined. However,
the fitted values ŷ = Xβ̂ are still the projection of y onto the column
space of X; there is just more than one way to express that projection
in terms of the column vectors of X. The non-full-rank case occurs most
often when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement

� The matrix H = X
(
XTX

)−1
XT is sometimes called the “hat” matrix

because it puts the hat on y.
16/31 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Multiple regression model
� We minimize RSS(β) = ‖y −Xβ‖2 by choosing β̂ so that the residual vector

y − ŷ is orthogonal to this subspace. This orthogonality is expressed in
Eq. (1), and the resulting estimate ŷ is hence the orthogonal projection of y
onto this subspace.

� The hat matrix H computes the orthogonal projection, and hence it is also
known as a projection matrix.

� If the columns of X are not linearly independent, so that X is not of full rank.
For example, if two of the inputs were perfectly correlated, (e.g., x2 = 3x1).
Then XTX is singular and the least squares coefficients β̂ are not uniquely
defined.

� However, the fitted values ŷ = Xβ̂ are still the projection of y onto the
column space of X; there is just more than one way to express that projection
in terms of the column vectors of X.
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Multiple regression model
� Rank deficiencies can also occur in signal and image analysis, where the

number of inputs p can exceed the number of training cases N . In this case,
the features are typically reduced by filtering or else the fitting is controlled by
regularization.

� Up to now we have made minimal assumptions about the true distribution of
the data. Sampling properties of β̂ assume yi are uncorrelated and have
constant variance σ2, and that the xi are fixed (non random).

Var(β̂) =
(
XTX

)−1
σ2

Typically one estimates the variance σ2 by

σ̂2 =
1

N − p− 1

N∑

i=1

(yi − ŷi)2 .

18/31 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Multiple regression model: drawn inference

� We assume as Y = f(x) = β0 +
∑n

i=1Xjβj is correct model, that means

Y = E (Y | X1, . . . , Xp) + ε

= β0 +

p∑

j=1

Xjβj + ε

where the error ε is a Gaussian random variable with expectation zero and
variance σ2, written ε ∼ N (0, σ2).

� It is easy to show that

β̂ ∼ N
(
β,
(
XTX

)−1
σ2
)
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Multiple Regression from Simple Univariate
Regression
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Multiple Regression from Simple Univariate Regression

� The linear model with p > 1 inputs is called the multiple linear regression
model.

� Suppose first that we have a univariate model with no intercept, that is,

Y = Xβ + ε

� The least squares estimate and residuals are

β̂ =

∑N
1 xiyi∑N
1 x

2
i

ri = yi − xiβ̂

21/31 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Multiple Regression from Simple Univariate Regression
� In convenient vector notation, we let y = (y1, . . . , yN)T ,x = (x1, . . . , xN)T

and define

〈x,y〉 =
N∑

i=1

xiyi,

= xTy

the inner product between x and y.
� Then we can write

β̂ = 〈x,y〉
〈x,x〉

r = y − xβ̂

This simple univariate regression provides the building block for multiple linear
regression.
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Multiple Regression from Simple Univariate Regression

� Suppose next that the inputs x1, x2, . . . , xp (the columns of the data matrix
X) are orthogonal; that is

〈xj,xk〉 = 0 for all j 6= k.

� Then it is easy to check that the multiple least squares estimates β̂j are equal
to 〈xj,y〉 / 〈xj,xj〉 - the univariate estimates.

� In other words, when the inputs are orthogonal, they have no effect on each
other’s parameter estimates in the model.

� Orthogonal inputs occur most often with balanced, designed experiments
(where orthogonality is enforced), but almost never with observational data.

� Hence, we will have to orthogonalize them in order to carry this idea further.
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Multiple Regression from Simple Univariate Regression
� Suppose next that we have an intercept and a single input x. Then the least

squares coefficient of x has the form

β̂1 =
〈x− x̄1,y〉

〈x− x̄1,x− x̄1〉
where x̄ =

∑
i xi/N , and 1 = x0, the vector of N ones.

� We can view the estimate of β̂1 as the result of two applications of the simple
regression. The steps are:
1. regress x on 1 to produce the residual z = x− x̄1;
2. regress y on the residual z to give the coefficient β̂1.

� In this procedure, “regress b on a” means a simple univariate regression of b
on a with no intercept, producing coefficient γ̂ = 〈a,b〉/〈a, a〉 and residual
vector b− γ̂a. We say that b is adjusted for a, or is ”orthogonalized” with
respect to a.
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Multiple Regression from Simple Univariate Regression

� Step 1 orthogonalizes x with respect to x0 = 1.

� Step 2 is just a simple univariate regression, using the orthogonal predictors 1
and z.

Algorithm: Regression by Successive Orthogonalization.
1. Initialize z0 = x0 = 1
2. For j = 1, 2, . . . , p

Regress xj on z0, z1, . . . , zj−1 to produce coefficients γ̂`j =
〈z`,xj〉 / 〈z`, z`〉 , ` = 0, . . . , j − 1 and residual vector zj =

xj −
∑j−1

k=0 γ̂kjzk

3. Regress y on the residual zp to give the estimate β̂p .

54 3. Linear Methods for Regression

x1

x2

y

ŷ
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FIGURE 3.4. Least squares regression by orthogonalization of the inputs. The
vector x2 is regressed on the vector x1, leaving the residual vector z. The regres-
sion of y on z gives the multiple regression coefficient of x2. Adding together the
projections of y on each of x1 and z gives the least squares fit ŷ.

Algorithm 3.1 Regression by Successive Orthogonalization.

1. Initialize z0 = x0 = 1.

2. For j = 1, 2, . . . , p

Regress xj on z0, z1, . . . , , zj−1 to produce coefficients γ̂ℓj =
〈zℓ,xj〉/〈zℓ, zℓ〉, ℓ = 0, . . . , j − 1 and residual vector zj =

xj −
∑j−1

k=0 γ̂kjzk.

3. Regress y on the residual zp to give the estimate β̂p.

The result of this algorithm is

β̂p =
〈zp,y〉
〈zp, zp〉

. (3.28)

Re-arranging the residual in step 2, we can see that each of the xj is a linear
combination of the zk, k ≤ j. Since the zj are all orthogonal, they form
a basis for the column space of X, and hence the least squares projection
onto this subspace is ŷ. Since zp alone involves xp (with coefficient 1), we
see that the coefficient (3.28) is indeed the multiple regression coefficient of
y on xp. This key result exposes the effect of correlated inputs in multiple
regression. Note also that by rearranging the xj , any one of them could
be in the last position, and a similar results holds. Hence stated more
generally, we have shown that the jth multiple regression coefficient is the
univariate regression coefficient of y on xj·012...(j−1)(j+1)...,p, the residual
after regressing xj on x0,x1, . . . ,xj−1,xj+1, . . . ,xp:
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Multiple Regression from Simple Univariate Regression

� Note that the inputs z0, . . . , zj−1 in step 2 are orthogonal, hence the simple
regression coefficients computed there are in fact also the multiple regression
coefficients. The result of this algorithm is

β̂p =
〈zp,y〉
〈zp, zp〉

(2)

� Stated more generally, the jth multiple regression coefficient is the univariate
regression coefficient of y on xj·012...(j−1)(j+1)...p, the residual after regressing

xj on x0,x1, . . . ,xj−1,xj+1, . . . ,xp : The multiple regression coefficient β̂j
represents the additional contribution of xj on y, after xj has been adjusted
for x0,x1, . . . ,xj−1, xj+1, . . . ,xp

26/31 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Multiple Regression from Simple Univariate Regression

� From (2), we also obtain an alternate formula for the variance estimates:

Var
(
β̂p

)
=

σ2

〈zp, zp〉
=

σ2

‖zp‖2

� In other words, the precision with which we can estimate β̂p depends on the
length of the residual vector zp; this represents how much of xp is unexplained
by the other xk’s.
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Multiple Regression from Simple Univariate Regression

� Above discussed Algorithm is known as the Gram–Schmidt procedure for
multiple regression, and is also a useful numerical strategy for computing the
estimates.

� We can represent step 2 of the Algorithm in matrix form:

X = ZΓ

where Z has as columns the zj (in order), and Γ is the upper triangular matrix
with entries γ̂kj.

28/31 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Multiple Regression from Simple Univariate Regression
� Introducing the diagonal matrix D with jth diagonal entry Djj = ‖zj‖, we get

X = ZD−1DΓ

= QR

the so-called QR decomposition of X. Here Q is an N × (p+ 1) orthogonal
matrix, QTQ = I, and R is a (p+ 1)× (p+ 1) upper triangular matrix. The
QR decomposition represents a convenient orthogonal basis for the column
space of X. It is easy to see, for example, that the least squares solution is
given by

β̂ = R−1QTy,
ŷ = QQTy

(3)

Equation (3) is easy to solve because R, is upper triangular.
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