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Local Methods in High Dimensions
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Introduction

� Two learning techniques for prediction
� The stable but biased linear model
� Less stable but apparently less biased class of k-NN estimates

� Curse of dimensionality
� For reasonably large set of training data, we could always approximate the

theoretically optimal conditional expectation by k-nearest-neighbor averaging;
however, this approach breaks in high dimensionality called Curse of
Dimensionality.
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Curse of dimensionality
2.5 Local Methods in High Dimensions 23
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FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.

distance from the origin to the closest data point is given by the expression

d(p,N) =
(
1− 1

2

1/N)1/p
(2.24)

(Exercise 2.3). A more complicated expression exists for the mean distance
to the closest point. For N = 500, p = 10 , d(p,N) ≈ 0.52, more than
halfway to the boundary. Hence most data points are closer to the boundary
of the sample space than to any other data point. The reason that this
presents a problem is that prediction is much more difficult near the edges
of the training sample. One must extrapolate from neighboring sample
points rather than interpolate between them.

Another manifestation of the curse is that the sampling density is pro-
portional to N1/p, where p is the dimension of the input space and N is the
sample size. Thus, if N1 = 100 represents a dense sample for a single input
problem, then N10 = 10010 is the sample size required for the same sam-
pling density with 10 inputs. Thus in high dimensions all feasible training
samples sparsely populate the input space.

Let us construct another uniform example. Suppose we have 1000 train-
ing examples xi generated uniformly on [−1, 1]p. Assume that the true
relationship between X and Y is

Y = f(X) = e−8||X||2 ,

without any measurement error. We use the 1-nearest-neighbor rule to
predict y0 at the test-point x0 = 0. Denote the training set by T . We can

� Consider a p-dimensional unit hypercube.

� Suppose we send out a hypercubical neighborhood about
a target point to capture a fraction r of the observations.
Then

Expected edge length = ep(r) = r1/p

� In ten dimensions e10(0.01) = 0.63 and e10(0.1) = 0.80,
while the entire range for each input is only 1.0.

� So to capture 1% or 10% of the data to form a local
average, we must cover 63% or 80% of the range of each
input variable. Such neighborhoods are no longer “local.”

5/37 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)



Introduction Local Methods in High Dimensions Structured Regression Models Prediction Errors Model Evaluation References

Curse of dimensionality

� Reducing r dramatically does not help much either, since the fewer
observations we average, the higher is the variance of our fit.

� Another consequence of the sparse sampling in high dimensions is that all
sample points are close to an edge of the sample.
� Consider N data points uniformly distributed in a p-dimensional unit ball

centered at the origin.
� Suppose we consider a nearest-neighbor estimate at the origin. The median

distance from the origin to the closest data point is given by the expression

d(p,N) =

(
1− 1

2

1/N
)1/p

� A more complicated expression exists for the mean distance to the closest point.
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Curse of dimensionality

� For N = 500, p = 10, d(p,N) = 0.52, more than halfway to the boundary.
Hence most data points are closer to the boundary of the sample space than to
any other data point.

� The reason that this presents a problem is that prediction is much more
difficult near the edges of the training sample.

� The sampling density is proportional to N1/p, where p is the dimension of the
input space and N is the sample size. Thus, if N1 = 100 represents a dense
sample for a single input problem, then N10 = 10010 is the sample size
required for the same sampling density with 10 inputs. Thus in high
dimensions all feasible training samples sparsely populate the input space.
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Example

� Suppose we have 1000 training examples xi generated uniformly on [−1, 1]p.
Assume that the true relationship between X and Y is

Y = f(X) = e−8‖X‖
2

without any measurement error.

� We use the 1-nearest-neighbor rule to predict y0 at the test-point x0 = 0.
Denote the training set by T .

� We can compute the expected prediction error at x0 for our procedure,
averaging over all such samples of size 1000.
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Example

� Since the problem is deterministic, this is the mean squared error (MSE) for
estimating f(0) :

MSE (x0) = ET [f (x0)− ŷ0]2

= ET [ŷ0 − ET (ŷ0)]
2 + [ET (ŷ0)− f (x0)]2

= VarT (ŷ0) + Bias2 (ŷ0)

� We have broken down the MSE into two components that will become familiar
as we proceed: variance and squared bias.

� Such a decomposition is always possible and often useful, and is known as the
bias–variance decomposition.
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Examples
2.5 Local Methods in High Dimensions 25
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FIGURE 2.7. A simulation example, demonstrating the curse of dimensional-
ity and its effect on MSE, bias and variance. The input features are uniformly
distributed in [−1, 1]p for p = 1, . . . , 10 The top left panel shows the target func-

tion (no noise) in IR: f(X) = e−8||X||2 , and demonstrates the error that 1-nearest
neighbor makes in estimating f(0). The training point is indicated by the blue tick
mark. The top right panel illustrates why the radius of the 1-nearest neighborhood
increases with dimension p. The lower left panel shows the average radius of the
1-nearest neighborhoods. The lower-right panel shows the MSE, squared bias and
variance curves as a function of dimension p.

Figure: A simulation example, demonstrating the curse of dimensionality and its effect on MSE, bias and
variance.
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Structured Regression Models
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Structured Regression Models

� We have seen that although nearest-neighbor and other local methods focus
directly on estimating the function at a point, they face problems in high
dimensions.

� They may also be inappropriate even in low dimensions in cases where more
structured approaches can make more efficient use of the data.

� This section introduces classes of such structured approaches. Before we
proceed, though, we discuss further the need for such classes.
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Difficulty of the Problem

� Consider the RSS criterion for an arbitrary function f ,

RSS(f) =
N∑

i=1

(yi − f (xi))2 (1)

� Minimizing above equation leads to infinitely many solutions: any function f̂
passing through the training points (xi, yi) is a solution.

� Any particular solution chosen might be a poor predictor at test points
different from the training points.

� If there are multiple observation pairs xi, yi` ` = 1, . . . , Ni at each value of xi,
the risk is limited. In this case, the solutions pass through the average values
of the yi` at each xi.
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Structured Regression Models

� In order to obtain useful results for finite N , we must restrict the eligible
solutions to Eq. (1) to a smaller set of functions.

� How to decide on the nature of the restrictions is based on considerations
outside of the data.

� These restrictions are sometimes encoded via the parametric representation of
f , or may be built into the learning method itself, either implicitly or explicitly.

� Any restrictions imposed on f that lead to a unique solution to Eq. (1) do not
really remove the ambiguity caused by the multiplicity of solutions.

� There are infinitely many possible restrictions, each leading to a unique
solution, so the ambiguity has simply been transferred to the choice of
constraint.
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Structured Regression Models

� Any method that attempts to produce locally varying functions in small
isotropic neighborhoods will run into problems in high dimensions–again the
curse of dimensionality.

� And conversely, all methods that overcome the dimensionality problems have
an associated–and often implicit or adaptive–metric for measuring
neighborhoods.

� Which basically does not allow the neighborhood to be simultaneously small in
all directions.
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Classes of Restricted Estimators

� The variety of nonparametric regression techniques or learning methods fall
into a number of different classes depending on the nature of the restrictions
imposed.

� These classes are not distinct, and indeed some methods fall in several classes.

� Each of the classes has associated with it one or more parameters, sometimes
appropriately called smoothing parameters, that control the effective size of
the local neighborhood.

� Broadly, In this course we will discuss three classes.

1. Roughness Penalty and Bayesian Methods
2. Kernel Methods and Local Regression
3. Basis Functions and Dictionary Methods

16/37 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Roughness Penalty and Bayesian Methods

� Here the class of functions is controlled by explicitly penalizing RSS(f) with a
roughness penalty

PRSS(f ;λ) = RSS(f) + λJ(f)

� The user-selected functional J(f) will be large for functions f that vary too
rapidly over small regions of input space. Penalty function, or regularization
methods, express our prior belief that the type of functions we seek exhibit a
certain type of smooth behavior, and indeed can usually be cast in a Bayesian
framework.
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Kernel Methods and Local Regression

� These methods can be thought of as explicitly providing estimates of the
regression function of conditional expectation by specifying the nature of the
local neighborhood, and of the class of regular functions fitted locally. The
local neighborhood is specified by a kernel function Kλ (x0, x) which assigns
weights to points x in a region around x0. In general we can define a local
regression estimate of f (x0) as fθ̂ (x0), where θ̂ minimizes

RSS (fθ, x0) =
N∑

i=1

Kλ (x0, xi) (yi − fθ (xi))2

and fθ is some parameterized function, such as a low-order polynomial.

18/37 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Basis Functions and Dictionary Methods

� The model for f is a linear expansion of basis functions

fθ(x) =
M∑

m=1

θmhm(x)

where each of the hm is a function of the input x, and the term linear here
refers to the action of the parameters θ. Adaptively chosen basis function
methods are also known as dictionary methods, where one has available a
possibly infinite set or dictionary D of candidate basis functions from which to
choose, and models are built up by employing some kind of search mechanism.
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Expected prediction error for categorical variable

� Already, We have seen that how we can compute prediction error for
quantitative output variables.

� What do we do when the output is a categorical variable G ?

� Our loss function can be represented by a K ×K matrix L, where
K = card(G).

� L will be zero on the diagonal and non-negative elsewhere, where L(k, l) is
the price paid for classifying an observation belonging to class Gk as Gl.

� Most often we use the zero-one loss function, where all misclassifications are
charged a single unit.
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Expected prediction error for categorical variable

� With this 0− 1 loss function the solution that minimizes the expected
prediction error is

Ĝ(X) = Gk if Pr (Gk | X = x) = max
g

Pr(g | X = x)

� This reasonable solution is known as the Bayes classifier, and says that we
classify to the most probable class, using the conditional (discrete) distribution
Pr(G | X).

� The error rate of the Bayes classifier is called the Bayes rate.
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Confusion Matrix
� For a two class-problem, a table of confusion (sometimes also called a

confusion matrix), is a table with two rows and two columns that reports the
number of
� false positives (FP),
� false negatives (FN),
� true positives (TP), and
� true negatives(TN)

� In statistical classification, a confusion matrix, also known as an error matrix.
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Performance Evaluation using confusion matrix

� True positive rate (TPR), also called Sensitivity

� False positive rate (FPR), also called Fall-out

� False negative rate (FNR), also called Miss rate

� True negative rate (TNR), also called Specificity

23/37 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Performance Evaluation using confusion matrix
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Receiver Operating Characteristics

� If we use a parameter (e.g., a
threshold) in our decision, the plot of
TPR vs FPR for different values of
the parameter is called the receiver
operating characteristic (ROC) curve.

� The ROC curve is created by plotting
the true positive rate (TPR) against
the false positive rate (FPR) at
various threshold settings.
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Figure: Example receiver operating characteristic (ROC)
curves for different setting of the system
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Receiver Operating Characteristics
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Receiver Operating Characteristics
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Cross-validation

� Cross-validation is a technique to measure predictive performance of a model.

� There are different way to perform this
� Holdout Sample: Training and Test Data
� Three-way split: Training, Validation, and Test Data
� Random subsampling
� K-fold Cross-Validation
� Leave-One-Out Cross-Validation
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Holdout Sample

� Data is split into two groups: Training set and Test set.

� The training set is used to train the learner.

� The test set is used to estimate the error rate of the trained model.

� Drawbacks
� In a sparse data set, one may not have the luxury to set aside a reasonable

portion of the data for testing.
� Since it is a single repetition of the train-&-test experiment, the error estimate

is not stable.
� If we happen to have a ‘bad’ split, the estimate is not reliable.

� A typical split is 80% for the training data and 20% for test set.
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Three-way Split
� The available data is partitioned into three sets: training, validation and test

set. The prediction model is trained on the training set and is evaluated on
the validation set.

� In general, validation set is used to set the model parameter optimal in the
training process.

� Training and validation may be iterated a few times till a ‘best’ model is
found. The final model is assessed using the test set.

� A typical split is 50% for the training data and 25% each for validation set
and test set.

� With three-way split, the model selection and the true error rate computation
can be carried out simultaneously. But error rate computation on a third
independent part of the data, the test data, is required.

� Unfortunately, data insufficiency often does not allow three-way split.
30/37 Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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Random subsampling
� The limitations of the holdout or three-way split can be overcome with a

family of resampling methods at the expense of higher computational cost.
� Essentially cross-validation includes techniques to split the sample into

multiple training and test data sets.
� Random subsampling performs K data splits of the entire sample. For each

data split, a fixed number of observations is chosen without replacement from
the sample and kept aside as the test data.

� The prediction model is fitted to the training data from scratch for each of the
K splits and an estimate of prediction error is obtained from each test set.

� Let the estimated PE in ith test set be denoted by Ei.

True error estimate =
1

K

K∑

i=1

Ei
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K-fold Cross-Validation

� The original sample is randomly partitioned into K equal sized (or almost
equal sized) subsamples.

� Of the K subsamples, a single subsample is retained as the test set for
estimating the PE, and the remaining K − 1 subsamples are used as training
data.

� The cross-validation process is then repeated K times (the folds), with each
of the K subsamples used exactly once as the test set. The K error estimates
from the folds can then be averaged to produce a single estimation.

� The advantage of this method is that all observations are used for both
training and validation, and each observation is used for validation exactly
once.
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K-fold Cross-Validation

� A common choice for K is 5 or 10.

� With a large number of folds (K large) the bias of the true error rate
estimator is small but the variance will be large.

� The computational time may also be very large as well, depending on the
complexity of the models under consideration.

� With a small number of folds the variance of the estimator will be small but
the bias will be large. The estimate may be larger than the true error rate.

� In practice the choice of the number of folds depends on the size of the data
set. For large data set, smaller K (e.g. 3) may yield quite accurate results.
For sparse data sets, Leave-one-out (LOO or LOOCV) may need to be used.
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Leave-One-Out Cross-Validation

� LOO is the degenerate case of K-fold cross-validation where K = n for a
sample of size n.

� That means n separate times, the prediction function is trained on all the data
except for one point and a prediction is made for that point.

� As before the average error is computed and used to evaluate the model.

� The evaluation given by leave-one-out cross validation error is good, but
sometimes it may be very expensive to compute.
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Further Reading Recommendation

� Explore the following articles
https://heartbeat.fritz.ai/

introduction-to-machine-learning-model-evaluation-fa859e1b2d7f

https://www.saedsayad.com/model_evaluation.htm
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