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Introduction

Goal is to use input to predict outputs.

O Inputs are measured or preset
O Inputs have some influence on one or more outputs

In statistics, the term inputs and predictors will be used interchangeably.

We call it independent variable in more classy way.

In pattern classification we call it features.

Outputs are called responses or the dependent variable.
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Variable Types

» Qutput/Target can be
0 quantitative (numerical values)
0 qualitative (categorical values, factor, discrete variables)
m Two class: {0,1} or {—1,1}
m Multiclass: dummy variable, K-level qualitative variable represented by k-bits.
m Examples of categorical variable
O lris discrimination
m Species of Iris, G = {Virginia, Setosa, and Versicolor}
0 Handwritten digit recognition
m Qutput is one of 10 different digit classes: G = {0, 1,...,9}

S04H/92

m There is no explicit ordering in the classes.
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Variable Types

® Based on these, naming convention for prediction tasks
0 Regression, when we predict quantitative outputs.
0 Classification, when we predict qualitative outputs.
® Input may also vary in measurement type: qualitative and quantitative
variable.
® Third variable: ordered categorical. Ex - small, medium, large
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Statandard Notations

11 Tiz ... Tip

To1 Tz ... Typ
X =

Tn1 Tp2 .. Tpyp

number of distinct data points/observations

number of variables available for making predictions

jth variable for the ith observation, where i = 1,2,...,n and j =
1,2,...,p

index for samples / observations

index for variables

denote a n X p matrix whose (7, j)th element is z;;
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Statandard Notations
x; : ith row of X having length p, [i1, T2, ..., 2|, ith observation
x; : jth column of X having length n, [z1;, %2, ..., T,;]", jth variable

T
T

Xz(xl Xy - xp) X =

T
L,

The T notation denotes the transpose of a matrix or vector.

11 21 ... Tpl
12 X292 ... Tp2
T __ T __
X5 = . . : ol =z @ o0 Ty )
Tip Top . Tpp

Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)




Introduction
00000080

Standard Notations

y; . ith observation of the variable
y : set of n observation in a vector form

Y1

Y2

y = .

Yn
® Then {(z1,v1),(22,y2), ..., (Tn,yn)} is a set of observed data.
m A vector of length n will always be denoted in lower case bold, e.g. x.
= A vector of length p will be denoted in lower case normal/italic font, e.g. x
m Scalars will also be denoted in lower case normal font, e.g. a.
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Standard Notations

m Matrices will be denoted using bold capitals, such as A.

® Random variables will be denoted using capital normal font, e.g. A, regardless
of their dimensions.

® To indicate that an object is a scalar, we will use the notation a € R.

= To indicate that it is a vector of length k, we will use a € R¥ (or a € R™if it
is of length n).

m We will indicate that an object is a r X s matrix using A € R™**

= Suppose that A € R"™*? and B € R?**. Then the product of A and B is
denoted as AB and (i, j)th element is

d

(AB)” = Z aikbkj

k=1

Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)




Statistical Learning
90000000

Statistical learning problem

m Suppose that we are statistical consultants hired by a client to provide advice
on how to improve sales of a particular product.

® |t is not possible for our client to directly increase sales of the product. They
can control the advertising expenditure in each of the three media (TV, Radio,
and Newspaper).

m Therefore, if we determine that there is an association between advertising
and sales, then we can instruct our client to adjust advertising budgets,
thereby indirectly increasing sales.

® Qur goal is to develop an accurate model that can be used to predict sales on
the basis of the three media budgets.
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Dataset

m The Advertising data set:
O consists of the sales of that product in 200 different markets
0 along with advertising budgets for the product in each of those markets for
three different media: TV, radio, and newspaper.

TV * Radio * Newspaper ~ Sales ~
230.1 37.8 69.2 22.1
44.5 39.3 45.1 10.4
17.2 45.9 69.3 9.3
151.5 41.3 58.5 18.5
180.8 10.8 58.4 12.9

® |n this example, the advertising budgets are input variables while sales is an
output variable.
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Variables

® |nput variable

O typically denoted using the symbol X, with a subscript to distinguish them.
0 X1 might be the TV budget, X5 the radio budget, and X3 the newspaper
budget.

0 The inputs go by different names, such as predictors, independent variables,
features, or sometimes just variables.

® Qutput variable
O in this case, sales

0 often called the response or dependent variable, and is typically denoted using
the symbol Y.
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Statistical Model

ale oo
I A ® Shown are Sales vs. TV,
h o 9% 8 % .
oo 8 50%s Radio, and Newspaper,
3 1 FREE .
3 8 iR ., with a blue
ng%ﬁgg%‘f ® . linear-regression line fit
PRI S separately to each.
e o ® Can we predict Sales
0 10 20 30 40 50 0 20 40 60 80 100 us'ng these three?
v Radio Newspaper

Figure: Advertising data
m Perhaps, we can do better using a model
sales ~ f(TV, Radio, N ewspaper)
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Statistical Model

m More generally, suppose that we observe a quantitative response Y and p
different predictors, X1, X, ..., X,.

m We assume that there is some relationship between Y and
X = (X, Xs,...,X,), which can be written in the very general form

(Y = f(X) +¢)

where € captures measurement errors and other discrepancies, which is
independent of X and has mean zero.

m |n this formulation, f represents the systematic information that X provides
about Y.
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Relationship between variables

Income

® Income data set: Single input variable
0 Left-hand Figure, a plot of income versus years of education for 30 individuals.
0 The plot suggests that one might be able to predict income using years of

3 40 50 60 70 80

20

education.

10 12 14 16 18 20 22

Years of Education
Figure: Income data set
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. * Education

10.00000
10.40134
10.84281
11.24415
11.64548
12.08696
12.48829

* Income

26.65884
27.30644
22.13241
21.16984
15.19263
26.39895
17.43531

A
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Relationship between variables

® Income data set: Single input variable
0 Left-hand Figure, a plot of income versus years of education for 30 individuals.
0 The plot suggests that one might be able to predict income using years of

education.
8 & 1 ® However, the function f that
7 7 connects the input variable to the
. ° . output variable is in general
£ 8 £ 8
S B £ g unknown.
81w .. 8 1 ® One must estimate f based on the
e N observed points.
e mE oo W = m The vertical lines represent the error
Years of Education Years of Education

Figure: Income data set terms e.
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Model Estimation, f

® |n general, the function f may involve
more than one input variable.

5
(5555 77
515556777 72777
(77
B 7SS
s e ek
vt
===
222225272

m We plot income as a function of years of
education and seniority.

m Here f is a two-dimensional surface that
must be estimated based on the observed
data.

® |n essence, statistical learning refers to a
set of approaches for estimating f.

Figure: Income data set
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f(X) is good for?

® With a good f, we can make predictions of Y at new points X =

= We can understand which components of X = (X, Xs,..., X)) are
important in explaining Y, and which are irrelevant. e.g. Seniority and Years of
Education have a big impact on Income, but Marital Status typically does not.

® Depending on the complexity of f, we may be able to understand how each
component X; of X affects Y.
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Why Estimate f7?

® There are two main reasons that we may wish to estimate f:
O prediction
O inference

® Prediction: In many situations, a set of inputs X are readily available, but the
output Y cannot be easily obtained. In this setting, since the error term
averages to zero, we can predict Y using

Y = f(X)
where f represents our estimate for f, and Y represents the resulting
prediction for Y.
® |n this setting, f is often treated as a black box, in the sense that one is not

typically concerned with the exact form of f provided that it yields accurate
predictions for Y.
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Why Estimate f7?

= As an example, suppose that X, ..., X, are characteristics of a patient's
blood sample that can be easily measured in a lab, and Y is a variable
encoding the patient'’s risk for a severe adverse reaction to a particular drug.

® |t is natural to seek to predict Y using X to avoid giving the drug in question
to patients.

® The accuracy of Y as a prediction for Y depends on two quantities, which we
will call the reducible error and the irreducible error.

® |n general, fwill not be a perfect estimate for f, and this inaccuracy will
introduce some error.

m This error is reducible because we can potentially improve the accuracy off
by using the most appropriate statistical learning technique to estimate f.

® Y is also a function of € so no matter how well we estimate f, we cannot
reduce the error introduced by ¢ known as irreducible error.
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Why Estimate f7?

= Consider a given estimate f and a set of predictors X, which yields the
prediction Y = f(X). Then
E(Y =Y)* = E[f(X) + e~ f(X)]
= [f(X) = fXOP + Var(e) ,
——

Reducible Irreducible

where E(Y — }7)2 represents the average, or expected value, of the squared
difference between the predicted and actual value of Y, and Var(e) represents
the variance associated with the error term e.

® The aim of this course is on techniques for estimating f with the aim of
minimizing the reducible error.
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Why Estimate f7?

® We are often interested in understanding the way that Y is affected as
Xi,...,X, change.
® |n this situation we wish to estimate f, but our goal is not necessarily to make
predictions for Y.
m We instead want to understand the relationship between X and Y, or more
specifically, to understand how Y changes as a function of X, ..., X,.
= Now, f cannot be treated as a black box, because we need to know its exact
form. In this setting, one may be interested in answering the following
questions:
0 Which predictors are associated with the response?
0 What is the relationship between the response and each predictor?
0 Can the relationship between Y and each predictor be adequately summarized
using a linear equation, or is the relationship more complicated?
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Why Estimate f7?

® |n contrast, consider the Advertising data. One may be interested in answering
questions such as:

0 Which media contribute to sales?
0 Which media generate the biggest boost in sales? or
0 How much increase in sales is associated with a given increase in T'V
advertising?
¥ Radio * Newspaper + Sales +
230.1 37.8 69.2 22.1
44.5 39.3 45.1 10.4
17.2 45.9 69.3 9.3
151.5 41.3 58.5 18.5
180.8 10.8 58.4 12.9

= Finally, some modeling could be conducted both for prediction and inference.
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Simple approaches for prediction

®= Two Simple Approaches to Prediction:
0 Least Squares: the linear model makes huge assumptions about structure and
yields stable but possibly inaccurate predictions.
0 Nearest Neighbors: the method of k-nearest neighbors makes very mild
structural assumptions. its predictions are often accurate but can be unstable.
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Linear Models and Least Squares

= Given a vector of inputs X7 = (X1, Xo,..., X)), we predict the output Y via
the model

The term Bo is the intercept, also known as the bias in machine learning.

= Often it is convenient to include the constant variable 1 in X, include 3, in
the vector of coefficients /3, and then write the linear model in vector form as
an inner product

Yy =X"3

= Viewed as a function over the p-dimensional input space, f(X) = X7/ is
linear, and the gradient f’(X) = [ is a vector in input space that points in the
steepest uphill direction.
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How do fit the linear model?

= How do we fit the linear model to a set of training data? There are many
different methods, but by far the most popular is the method of least squares.

® |n this approach, we pick the coefficients 5 to minimize the residual sum of
squares

RSS(B - asTﬂ

Mz

=1

RSS(p) is a quadratic function of the parameters, and hence its minimum
always exists, but may not be unique.
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How do fit the linear model?

m The solution is easiest to characterize in matrix notation. We can write

RSS(B) = (y — XB) ' (y — Xp)

where X is an N X p matrix with each row an input vector, and y is an
N-vector of the outputs in the training set.

= Differentiating w.r.t. 5 we get the normal equations
X"y = Xp8) =0
= |f X7X is nonsingular, then the unique solution is given by

B=(XTX)"' X"y

Dr. Kundan Kumar
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How do fit the linear model?

m The fitted value at the ith input z; is

m At an arbitrary input x( the prediction is
§(x0) = x5 8.

m The entire fitted surface is characterized by the (p + 1) parameters B.
Intuitively, it seems that we do not need a very large data set to fit such a
model.
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m This is an example of the linear model in a
classification context.

LS e = The fitted values Y are converted to a fitted class

variable G according to the rule

Figure: A classification example in two
dimensions. The classes are coded as a
binary variable (BLUE = 0, ORANGE

-~ [ ORANGE ifY >05
| BLUE ifY <0.5

= 1), and then fit by linear regression. = The set of points in R? classified as ORANGE

The line is the decision boundary . Th .
dofined by 2T B — 0.5, The orange corresponds to {z : ' 3 > 0.5},. :.:md the two predicted
shaded region denotes that part of input classes are separated by the decision boundary

space classified as ORANGE, while the
blue region is classified as BLUE.

{ : 2T = 0.5}, which is linear in this case.
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m Perhaps our linear model is too rigid — or are such errors unavoidable?
Remember that these are errors on the training data itself, and we have not
said where the constructed data came from. Consider the two possible
scenarios:

0 Scenario 1: The training data in each class were generated from bivariate
Gaussian distributions with uncorrelated components and different means.

0 Scenario 2: The training data in each class came from a mixture of 10 low
variance Gaussian distributions, with individual means themselves distributed as
Gaussian.

m A linear decision boundary is unlikely to be optimal, and in fact is not. The
optimal decision boundary is nonlinear and disjoint, and as such will be much
more difficult to obtain.
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Nearest-Neighbor Methods

= Nearest-neighbor methods use those observations in the training set 7 closest
in input space to = to form Y. Specifically, the k-nearest neighbor fit for Y is
defined as follows:
DN

x4 GNk(
where Ny (x) is the neighborhood of z defined by the k closest points x; in the
training sample.
m Closeness implies a metric, which for the moment we assume is Euclidean
distance.

m So, in words, we find the k observations with x; closest to x in input space,
and average their responses.
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15-Nearest Neighbor Classifier

m We use the same training data as in
previous example.

)//\._ . .

oo x m Use 15-nearest-neighbor averaging of the
binary coded response as the method of
fitting.

m We see that the decision boundaries that
Figure: The same classification example in two separate the BLUE from the ORANGE
dimensions. The classes are coded as a binary variable . f . |
(BLUE = 0, ORANGE = 1) and then fit by regions are rar more irregular, and respond
15-nearest-neighbor averaging. The predicted class is to local clusters where one class dominates.
hence chosen by majority vote amongst the 15-nearest

neighbors.
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Figure: The same classification example in two
dimensions. The classes are coded as a binary
variable (BLUE = 0, ORANGE = 1) and then

fit by 15-nearest-neighbor averaging as in (2.8).

The predicted class is hence chosen by majority
vote amongst the 15-nearest neighbors.

32/47

Y is assigned the value y, of the closest point x,
to x in the training data.

In this case the regions of classification can be
computed relatively easily, and correspond to a
Voronoi tessellation of the training data.

Each point x; has an associated tile bounding
the region for which it is the closest input point.
For all points  in the tile, G(z) = g;. The
decision boundary is even more irregular than
before.
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A comparison between Least Square and k-NN

® |t appears that k-nearest-neighbor fits have a single parameter, the number of
neighbors k, compared to the p parameters in least-squares fits.

= Although this is the case, we will see that the effective number of parameters
of k-nearest neighbors is N/k and is generally bigger than p, and decreases
with increasing k.

® To get an idea of why, note that if the neighborhoods were non-overlapping,
there would be N/k neighborhoods and we would fit one parameter (a mean)
in each neighborhood.

® |t is also clear that we cannot use sum-of-squared errors on the training set as
a criterion for picking k.

Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)
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A comparison between Least Square and k-NN

® The linear decision boundary from least squares is very smooth, and
apparently stable to fit.

m |t does appear to rely heavily on the assumption that a linear decision
boundary is appropriate.

® On the other hand, the k-nearest-neighbor procedures do not appear to rely
on any stringent assumptions about the underlying data, and can adapt to any
situation.

® However, any particular subregion of the decision boundary depends on a
handful of input points and their particular positions, and is thus wiggly and
unstable—high variance and low bias.

m Each method has its own situations for which it works best; in particular linear
regression is more appropriate for Scenario 1 above, while nearest neighbors
are more suitable for Scenario 2.
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A comparison between Least Square and k-NN

k= Number of Nearest Neighbors

151 101 69 45 31 21 1 7 5 3 1
T T Y I R B M R I I

0.30
I

Linear

025
I

Test Error
0.20
I

0.15
I

0.10
I

2 3 5 8 12 18 29 67 200

Degrees of Freedom - Nk

Figure: Misclassification curves for the simulation example used in earlier Figures. A single training sample of
size 200 was used, and a test sample of size 10,000. The orange curves are test and the blue are training error
for k-nearest-neighbor classification. The results for linear regression are the bigger orange and blue squares at
three degrees of freedom. The purple line is the optimal Bayes error rate.
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Assessing model accuracy

m There is no free lunch in statistics: no one method dominates all others over
all possible data sets.

® Hence it is an important task to decide for any given set of data which
method produces the best results.

m Evaluating models is one of the best solutions
0 Regression problem: measuring the quality of fit

MSE = Tllzn: (yl—f(xz)>2

i=1

where f(z;) is the prediction that f gives for the ith observation.
o Classification problem

Ave (yo - f(:vo)>2

the average squared prediction error for the test observations (zg, yo).
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Assessing model accuracy
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Figure: Left: Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line
(orange curve), and two smoothing spline fits (blue and green curves). Right: Training MSE (grey curve), test
MSE (red curve), and minimum possible test MSE over all methods (dashed line). Squares represent the training
and test MSEs for the three fits shown in the left-hand panel.
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Assessing model accuracy
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Figure: Left: Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line
(orange curve), and two smoothing spline fits (blue and green curves). Right: Training MSE (grey curve), test
MSE (red curve), and minimum possible test MSE over all methods (dashed line). Squares represent the training
and test MSEs for the three fits shown in the left-hand panel.
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Assessing model accuracy
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Figure: Left: Data simulated from f, shown in black. Three estimates of f are shown: the linear regression line
(orange curve), and two smoothing spline fits (blue and green curves). Right: Training MSE (grey curve), test
MSE (red curve), and minimum possible test MSE over all methods (dashed line). Squares represent the training
and test MSEs for the three fits shown in the left-hand panel.
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The Bias-Variance Trade-Off

® The U-shape observed in the test MSE curves turns out to be the result of
two competing properties of statistical learning methods.

m Suppose the data arise from a model Y = f(X) + ¢, with E(¢) = 0 and
Var(e) = o2

m For simplicity, here, we assume that the values of x; in the sample are fixed in
advance (nonrandom). The expected prediction error at g, also known as test
or generalization error, can be decomposed:

EPE, (10) = E [(Y fe xg)) | X = a;g]

=02+ {Bias2 <fk (330)> + Varr (f’“ (xO))}

o
a
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The Bias-Variance Trade-Off

m There are three terms in this expression.

0 The first term o is the irreducible error — the variance of the new test
target—and is beyond our control, even if we know the true f(xo).

O The second and third terms are under our control, and make up the mean
squared error of fi(zo) in estimating f(zq), which is broken down into a bias
component and a variance component.

® The bias term is the squared difference between the true mean f (xy) and the

~ 2
expected value of the estimate- [f (x0) — Er <fk (x0)>] -where the

expectation averages the randomness in the training data.

m This term will most likely increase with k. if the true function is reasonably
smooth.

= For small k the few closest neighbors will have values f () close to f (o),
so their average should be close to f(x).
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The Bias-Variance Trade-Off

m The variance term is simply the variance of an average here, and decreases as
the inverse of k. So as k varies, there is a bias—variance tradeoff.
= What do we mean by the variance and bias of a statistical learning method?

0 Variance refers to the amount by which fwould change if we estimated it using
a different training data set.

0 Since the training data are used to fit the statistical learning method, different
training data sets will result in a different f

0 But ideally the estimate for f should not vary too much between training sets.

0 However, if a method has high variance then small changes in the training data
can result in large changes in f

O In general, more flexible statistical methods have higher variance.

m Bias refers to the error that is introduced by approximating a real-life problem,
which may be extremely complicated, by a much simpler model.

42/47

Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)




Model accuracy
0000000800

The Bias-Variance Trade-Off

® Good test set performance of a statistical learning method requires low
variance as well as low squared bias.

m This is referred to as a trade-off because it is easy to obtain a method with
extremely low bias but high variance (for instance, by drawing a curve that
passes through every single training observation) or a method with very low
variance but high bias (by fitting a horizontal line to the data).

® [n a real-life situation in which f is unobserved, it is generally not possible to
explicitly compute the test MSE, bias, or variance for a statistical learning
method.

m Nevertheless, one should always keep the bias-variance trade-off in mind.

Dr. Kundan Kumar Foundation of Machine Learning (CSE4032)




Model accuracy
0000000080

The Bias-Variance Trade-Off

High Bias Low Bias
Low Variance High Variance
--------- emmeaaa -

Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity

Figure: Test and training error as a function of model complexity.
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The Bias-Variance Trade-Off

® More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

m Typically we would like to choose our model complexity to trade bias off with
variance in such a way as to minimize the test error.

® The training error tends to decrease whenever we increase the model
complexity, that is, whenever we fit the data harder. However with too much
fitting, the model adapts itself too closely to the training data, and will not
generalize well (i.e., have large test error). In that case the predictions f ()
will have large variance.

® |n contrast, if the model is not complex enough, it will underfit and may have
large bias, again resulting in poor generalization.
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